Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Front Cell Infect Microbiol ; 14: 1410681, 2024.
Article in English | MEDLINE | ID: mdl-39185086

ABSTRACT

Objective: In clinical practice, imaging manifestations of diffuse lung parenchymal lesions are common and indicative of various diseases, making differential diagnosis difficult. Some of these lesions are eventually diagnosed as lung cancer. Methods: Because respiratory microorganisms play an important role in lung cancer development, we searched for microbial markers that could predict the risk of lung cancer by retrospectively analyzing the lower respiratory tract (LRT) microbiome of 158 patients who were hospitalized in the First Affiliated Hospital of Guangzhou Medical University (March 2021-March 2023) with diffuse lung parenchymal lesions. The final diagnosis was lung cancer in 21 cases, lung infection in 93 cases, and other conditions (other than malignancy and infections) in 44 cases. The patient's clinical characteristics and the results of metagenomic next-generation sequencing of bronchoalveolar lavage fluid (BALF) were analyzed. Results: Body mass index (BMI) and LRT microbial diversity (Shannon, Simpson, species richness, and Choa1 index) were significantly lower (P< 0.001, respectively) and Lactobacillus acidophilus relative abundance in the LRT was significantly higher (P< 0.001) in patients with lung cancer. The relative abundance of L. acidophilus in BALF combined with BMI was a good predictor of lung cancer risk (area under the curve = 0.985, accuracy = 98.46%, sensitivity = 95.24%, and specificity = 100.00%; P< 0.001). Conclusion: Our study showed that an imbalance in the component ratio of the microbial community, diminished microbial diversity, and the presence of specific microbial markers in the LRT predicted lung cancer risk in patients with imaging manifestations of diffuse lung parenchymal lesions.


Subject(s)
Bronchoalveolar Lavage Fluid , Lung Neoplasms , Microbiota , Humans , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Male , Female , Middle Aged , Bronchoalveolar Lavage Fluid/microbiology , Retrospective Studies , Aged , Lung/microbiology , Lung/pathology , Lung/diagnostic imaging , High-Throughput Nucleotide Sequencing , Adult , Respiratory System/microbiology , Metagenomics/methods , Risk Factors
2.
Huan Jing Ke Xue ; 45(7): 4044-4051, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022952

ABSTRACT

The safety and security of stored rainwater quality is the key to improve the efficiency of rainwater resources storage, and roof rainwater is the best scenario for rainwater storage and utilization. Through long-term monitoring of the evolution of water quality during the roof rainwater storage process, different storage materials (PE and glass) and different DO regulation modes (sealing and aeration) were constructed, and 16S rRNA microbial diversity sequencing and environmental factor correlation methods were used to characterize the changes in water quality under microbial metabolism during the rainwater storage process, as well as the potential risks of utilization and health. The results showed that the degradation of COD occurred mainly in the first 10 days of the storage process, and the nutrients were transformed mainly by microbial metabolism. There were differences in the characteristics of water quality changes under different water storage conditions, with traditional PE materials promoting the propagation of some pathogenic Xanthobacter, Alternaria, Stachybotrys, and Cladosporium, which were negatively correlated with DO and pH. Aeration was beneficial in reducing the abundance of bacteria and fungi, whereas the sealed water storage method was beneficial in inhibiting the growth of pathogenic bacteria such as Legionella.


Subject(s)
Rain , Water Microbiology , Water Quality , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics
3.
Ecotoxicol Environ Saf ; 282: 116750, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39053045

ABSTRACT

Microcystins (MCs) are secondary metabolites generated by cyanobacterial blooms, among which microcystin-LR (MC-LR) stands out as the most widely distributed variant in aquatic environments. However, the effects of MC-LR on the colorectum and its role in promoting colorectal tumor progression remain unclear. Therefore, this study aims to scrutinize the impact of MC-LR on a mice model of colitis-associated colorectal cancer and elucidate the potential underlying molecular mechanisms. In this study, we used AOM/DSS mice and orally administered MC-LR at doses of 40 µg/kg or 200 µg/kg. Exposure to MC-LR increased tumor burden, promoted tumor growth, shortened colon size, and decreased goblet cell numbers and tight junction protein levels in intestinal tissues. Additionally, exposure to MC-LR induced alterations in the structure of gut microbiota in the mouse colon, characterized by an increase in the relative abundance of Escherichia_coli and Shigella_sonnei, and a decline in the relative abundance of Akkermansia_muciniphila. Transcriptomic analysis revealed that MC-LR exposure activated the IL-17 signaling pathway in mouse colorectal tissues and participated in inflammation regulation and immune response. Immunofluorescence results demonstrated an increase in T-helper 17 (Th17) cell levels in mouse colorectal tumors following MC-LR exposure. The results from RT-qPCR revealed that MC-LR induced the upregulation of IL-6, IL-1ß, IL-10, IL-17A, TNF-α, CXCL1, CXCL2, CXCL5 and CCL20. The novelty of this study lies in its comprehensive approach to understanding the mechanisms by which MC-LR may contribute to CRC progression, offering new perspectives and valuable reference points for establishing guidance standards regarding MC-LR in drinking water. Our findings suggest that even at guideline value, MC-LR can have profound effects on susceptible mice, emphasizing the need for a reevaluation of guideline value and a deeper understanding of the role of environmental toxins in cancer progression.


Subject(s)
Colitis-Associated Neoplasms , Dysbiosis , Gastrointestinal Microbiome , Marine Toxins , Microcystins , Animals , Microcystins/toxicity , Gastrointestinal Microbiome/drug effects , Mice , Dysbiosis/chemically induced , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/microbiology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Male , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal , Colitis/chemically induced , Colitis/pathology , Colitis/microbiology
4.
PLoS One ; 19(7): e0307686, 2024.
Article in English | MEDLINE | ID: mdl-39078999

ABSTRACT

To ensure optimal use of images while preserving privacy, it is necessary to partition the shared image into public and private areas, with public areas being openly accessible and private areas being shared in a controlled and privacy-preserving manner. Current works only facilitate image-level sharing and use common cryptographic algorithms. To ensure efficient, controlled, and privacy-preserving image sharing at the area level, this paper proposes an image partition security-sharing mechanism based on blockchain and chaotic encryption, which mainly includes a fine-grained access control method based on Attribute-Based Access Control (ABAC) and an image-specific chaotic encryption scheme. The proposed fine-grained access control method employs smart contracts based on the ABAC model to achieve automatic access control for private areas. It employs a Cuckoo filter-based transaction retrieval technique to enhance the efficiency of smart contracts in retrieving security attributes and policies on the blockchain. The proposed chaotic encryption scheme generates keys based on the private areas' security attributes, largely reducing the number of keys required. It also provides efficient encryption with vector operation acceleration. The security analysis and performance evaluation were conducted comprehensively. The results show that the proposed mechanism has lower time overhead than current works as the number of images increases.


Subject(s)
Algorithms , Blockchain , Computer Security , Privacy
5.
Sci Total Environ ; 949: 175040, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39079638

ABSTRACT

Trichloromethane (TCM), a commonly recognized disinfection by-product formed during the chlorination of water, has been associated with the onset of colorectal cancer (CRC) in humans. Despite this, the impact of TCM on the progression of CRC remains uncertain. In this investigation, it was observed that exposure to TCM could augment the migratory capabilities of CRC cells and facilitate the advancement of colorectal tumors. To delve deeper into the mechanism responsible for TCM-induced CRC progression, we performed RNA-Seq analysis at cellular and animal levels after TCM exposure. Both the KEGG and GO enrichment analyses indicated the activation of endoplasmic reticulum stress (ERS) and the regulation of the cytoskeleton. Subsequently, we confirmed the activation of the IRE1α/XBP1 pathway of ERS through western blot and RT-qPCR. Additionally, we observed the aggregation of cytoskeletal proteins F-actin and ß-tubulin at the cell membrane periphery and the development of cellular pseudopods using immunofluorescence following exposure to TCM in vitro. The downregulation of IRE1α and XBP1 through siRNA interference resulted in the disruption of cell cytoskeleton rearrangement and impaired cell migration capability. Conversely, treatment with TCM mitigated this inhibitory effect. Moreover, chronic exposure to low concentration of TCM also triggered CRC cell migration by causing cytoskeletal reorganization, a process controlled by the IRE1α/XBP1 axis. Our study concludes that TCM exposure induces cell migration through the activation of ERS, which in turn regulates cytoskeleton rearrangement. This study offers novel insights into the mechanism through which TCM facilitates the progression of CRC.


Subject(s)
Chloroform , Colorectal Neoplasms , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Humans , Mice , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Chloroform/toxicity , Drinking Water
6.
Toxins (Basel) ; 16(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787064

ABSTRACT

Microcystins (MCs), toxins generated by cyanobacteria, feature microcystin-LR (MC-LR) as one of the most prevalent and toxic variants in aquatic environments. MC-LR not only causes environmental problems but also presents a substantial risk to human health. This study aimed to investigate the impact of MC-LR on APCmin/+ mice, considered as an ideal animal model for intestinal tumors. We administered 40 µg/kg MC-LR to mice by gavage for 8 weeks, followed by histopathological examination, microbial diversity and metabolomics analysis. The mice exposed to MC-LR exhibited a significant promotion in colorectal cancer progression and impaired intestinal barrier function in the APCmin/+ mice compared with the control. Gut microbial dysbiosis was observed in the MC-LR-exposed mice, manifesting a notable alteration in the structure of the gut microbiota. This included the enrichment of Marvinbryantia, Gordonibacter and Family_XIII_AD3011_group and reductions in Faecalibaculum and Lachnoclostridium. Metabolomics analysis revealed increased bile acid (BA) metabolites in the intestinal contents of the mice exposed to MC-LR, particularly taurocholic acid (TCA), alpha-muricholic acid (α-MCA), 3-dehydrocholic acid (3-DHCA), 7-ketodeoxycholic acid (7-KDCA) and 12-ketodeoxycholic acid (12-KDCA). Moreover, we found that Marvinbryantia and Family_XIII_AD3011_group showed the strongest positive correlation with taurocholic acid (TCA) in the mice exposed to MC-LR. These findings provide new insights into the roles and mechanisms of MC-LR in susceptible populations, providing a basis for guiding values of MC-LR in drinking water.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Marine Toxins , Microcystins , Animals , Microcystins/toxicity , Gastrointestinal Microbiome/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Male , Disease Progression , Dysbiosis/chemically induced , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Bile Acids and Salts/metabolism
7.
Bioresour Technol ; 402: 130772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703959

ABSTRACT

To explore the enzyme-enhanced strategy of a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic codigestion system of food waste and corn straw was first operated stably, and then the best combination of compound enzymes (laccase, endo-ß-1,4-glucanase, xylanase) was determined via a series of batch trials. The results showed that the methane yield (186.8 ± 19.9 mL/g VS) with enzyme addition was 12.2 % higher than that without enzyme addition. Furthermore, the removal rates of cellulose, hemicellulose and lignin increased by 31 %, 36 % and 78 %, respectively. In addition, dynamic membranes can form faster and more stably with enzyme addition. The addition of enzymes changed the structure of microbial communities while maintaining sufficient hydrolysis bacteria (Bacteroidetes), promoting the proliferation of Proteobacteria as a dominant strain and bringing stronger acetylation ability. In summary, the compound enzyme strengthening strategy successfully improved the methane production, dynamic membrane effect, and degradation rate of lignocellulose in AnDMBR.


Subject(s)
Bioreactors , Lignin , Membranes, Artificial , Methane , Lignin/metabolism , Anaerobiosis , Methane/metabolism , Hydrolysis , Zea mays/chemistry , Enzymes/metabolism , Bacteria/metabolism
8.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615650

ABSTRACT

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Subject(s)
Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
9.
Environ Pollut ; 349: 123951, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604305

ABSTRACT

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.


Subject(s)
Metals, Heavy , Microalgae , Phosphates , Symbiosis , Wastewater , Water Pollutants, Chemical , Metals, Heavy/metabolism , Wastewater/chemistry , Phosphates/pharmacology , Phosphates/metabolism , Waste Disposal, Fluid/methods , Bacteria/metabolism , Bacteria/drug effects , Zinc
10.
Water Res ; 255: 121535, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564890

ABSTRACT

The fluctuating characteristics of rural sewage flow pose a significant challenge for wastewater treatment plants, leading to poor effluent quality. This study establishes a novel adaptive activated sludge (AAS) process specifically designed to address this challenge. By dynamically adjusting to fluctuating water flow in situ, the AAS maintains system stability and promotes efficient pollutant removal. The core strategy of AAS leverages the inherent dissolved oxygen (DO) variations caused by flow fluctuations to establish an alternating anoxic-aerobic environment within the system. This alternating operation mode fosters the growth of aerobic denitrifiers, enabling the simultaneous nitrification and denitrification (SND) process. Over a 284-day operational period, the AAS achieved consistently high removal efficiencies, reaching 94 % for COD and 62.8 % for TN. Metagenomics sequencing revealed HN-AD bacteria as the dominant population, with the characteristic nap gene exhibiting a high relative abundance of 0.008 %, 0.010 %, 0.014 %, and 0.015 % in the anaerobic, anoxic, dynamic, and oxic zones, respectively. Overall, the AAS process demonstrates efficient pollutant removal and low-carbon treatment of rural sewage by transforming the disadvantage of flow fluctuation into an advantage for robust DO regulation. Thus, AAS offers a promising model for SND in rural sewage treatment.

11.
Sci Total Environ ; 926: 171796, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513848

ABSTRACT

Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.


Subject(s)
Composting , Animals , Humans , Air Microbiology , Bacteria , Endotoxins , Temperature , Aerosols
12.
J Environ Manage ; 355: 120463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430882

ABSTRACT

Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.


Subject(s)
Charcoal , Composting , Animals , Swine , Charcoal/chemistry , Manure/microbiology , Soil/chemistry , Humic Substances , Carbohydrates , Bacteria
13.
Pest Manag Sci ; 80(7): 3516-3525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38441302

ABSTRACT

BACKGROUND: The on-site molecular detection of plant pathogens is particularly important for the development of sustainable agriculture. Extracting DNA from plant tissues, microbes or coexisting environments is complex, labor-intensive and time-consuming. To facilitate this process, we propose a DNA purification strategy based on graphene oxide (GO). RESULTS: The excellent adsorption ability of GO was verified by visualizing changes in its microscopic surface and macroscopic mixture. To further optimize the DNA purification, we determined the optimal GO concentration and treatment time at 95 °C (2 mg mL-1 and 2 min, respectively). We confirmed that our strategy is effective on plant tissues and various microorganisms, and that the obtained DNA can be directly used for polymerase chain reaction amplification. Combining the proposed GO-based DNA purification method with the loop-mediated isothermal amplification method is superior, in terms of the required steps, time, cost and detection effect, to the cetyltrimethylammonium bromide method and a commercial kit for detecting plant pathogens. CONCLUSION: We present a feasible, rapid, simple and low-cost DNA purification method with high practical value for scientific applications in plant pathogen detection. This strategy can also provide important technical support for future research on plant-microbial microenvironments. © 2024 Society of Chemical Industry.


Subject(s)
Graphite , Graphite/chemistry , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , DNA, Bacterial , Polymerase Chain Reaction/methods , Adsorption , Molecular Diagnostic Techniques
14.
Environ Monit Assess ; 196(3): 307, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407658

ABSTRACT

As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.


Subject(s)
Ecosystem , Environmental Pollutants , Entropy , Sewage , Environmental Monitoring
15.
Bioresour Technol ; 393: 129976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972901

ABSTRACT

The unstable operation and poor effluent quality often associated with decentralized sewage treatment systems due to fluctuating water flows have garnered significant attention. In this study, a novel integrated process combining anoxic denitrification and simultaneous nitrification and denitrification was developed to address these challenges. The improved anaerobic-anoxic-aerobic system achieved average effluent concentrations of 20.83 mg/L and 4.63 mg/L for chemical oxygen demand and NH4+-N, with average removal rates of 91 % and 68 %, respectively. Moreover, the aerobic zone demonstrated an impressive efficiency of 40.8 % for simultaneous nitrification and denitrification. The key bacteria groups driving the system's performance were heterotrophic and aerobic nitrifying bacteria, which dominated the microbial populations. Overall, the system optimizes the traditional anaerobic-anoxic-aerobic process, providing an effective solution for fluctuating wastewater flows. It establishes a successful coexistence model for multiple microbial populations, highlighting its applicability for superior nitrogen removal performance, and reference for optimizing rural sewage treatment. TAKE HOME MESSAGE SENTENCE: The improved anaerobic-anoxic-aerobic system for fluctuating wastewater treatment has superior nitrogen removal performance depending on multiple microbial populations.


Subject(s)
Denitrification , Sewage , Sewage/microbiology , Anaerobiosis , Nitrogen , Wastewater , Nitrification , Bacteria, Aerobic , Bioreactors/microbiology
16.
Sci Total Environ ; 912: 168784, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000760

ABSTRACT

The development of rainwater utilization strategies has relied on rainwater harvesting (RWH) systems for centuries to alleviate the pressure on water resources. However, there are still significant knowledge gaps regarding the changes in water quality in RWH systems during long-term storage in non-rainy seasons. This study evaluated the water quality processes in RWH systems through static rainwater storage experiments for approximately 60 days. The results revealed that nutrients in rainwater accumulated in sediment during storage. Disturbance and redox conditions at the rainwater-sediment interface contribute to the release of sedimentary facies materials. The rainwater showed distinct DO stratification, with the biochemical reactions of sedimentary facies being the primary factor driving oxygen consumption. ORP and turbidity showed positive correlations with COD (r = 0.582; 0.572), TOC (r = 0.678; 0.681), TN (r = 0.452; 0.439), and NH4+-N (r = 0.502; 0.553) (P < 0.05). The regulation of water quality and extension of the usage cycle were identified as critical factors influenced by DO. In addition, bacteria share similar ecological niche preferences. These findings provide scientific evidence for the high-quality reuse of rainwater in decentralized RWH systems during long-term storage in non-rainy seasons.

17.
J Hazard Mater ; 465: 133288, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38154182

ABSTRACT

The existence of dissolved organic matter (DOM) with low coagulability poses great challenges for conventional coagulation (CC) in water treatment. As a kind of typical organochlorine pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D) cannot be efficiently removed by CC. To enhance the 2,4-D removal, ozonation was applied with coagulation. The hybrid ozonation-coagulation (HOC) achieved 60.61% DOC removal efficiency, which was obviously higher than pre-ozonation coagulation (POC) (45.83%). Synchronous fluorescence spectroscopy revealed stronger complexation between modified 2,4-D and coagulants during the HOC than that in subsequent coagulation of the POC process. During the HOC process, ozone promoted the formation of polymeric Al species, such as Alb. To investigate the 2,4-D removal mechanism, γ-Al2O3/O3 process with the same oxidation ability as the HOC was established. 2,4-D was oxidized step-by-step to 2,4-dichlorophenol, 4,6-dichlororesorcin, 3,5-dichlorocatechol, 2-chlorohydroquinone, 4-chlorocatechol, 1,2,4,5-tetrahydroxybenzene, pentahydroxybenzene and oxalic acid in γ-Al2O3/O3 process. However, during the HOC process, these oxidized intermediates were readily complexed by coagulants and accumulated in flocs. Especially 1,2,4,5-tetrahydroxybenzene and pentahydroxybenzene, completely complexed by AlCl3•6H2O hydrolysates as soon as being formed. Immediate entrapment and complexation between coagulant hydrolysates and 2,4-D oxidized intermediates inhibited the generation of small-molecular-weight organics such as oxalic acid, which enhanced the removal of organics with low coagulability.

18.
Bioresour Technol ; 394: 130214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122996

ABSTRACT

Biochar has demonstrated the potential in mitigating N2O emissions during composting. However, little is known about how microbial communities on biochar particles interact with N2O emissions. This study selected three types of biochar (corn stalk biochar (CSB), rape straw biochar (RSB), and bamboo charcoal (BC)) to investigate the relationship between N2O emissions and denitrifying bacterial communities on compost and biochar particles. The results showed that N2O emissions rate were higher in the thermophilic phase, and the average emissions rate of BC treatment were lower 40% and 26% than CSB and RSB, respectively. The nosZ-carrying denitrifying bacterial community played a key role in reducing N2O emissions, and the network indicated that Rhizobium and Paracoccus on compost particles may have played major roles in reducing N2O emissions, but only Paracoccus on biochar particles. Notably, BC enhanced the efficiency of N2O emission reduction by enhancing the abundance of these key genera.


Subject(s)
Composting , Denitrification , Charcoal , Nitrous Oxide/analysis , Soil , Bacteria , Soil Microbiology
19.
J Environ Manage ; 350: 119640, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38029499

ABSTRACT

The proposal of the dual carbon goal and the blue economy in China has sparked a keen interest in carbon emissions reduction from sewage treatment. Carbon accounting in urban sewage plants serves as the foundation for carbon emission reduction in sewage treatment. This paper re-evaluated carbon accounting in the operational processes for urban sewage treatment plants to develop a novel carbon emission evaluation model for anaerobic-anoxic-oxic treatment plants. The results show that the carbon emissions generated by non-carbon dioxide gases far exceed the carbon emissions from carbon dioxide alone. Moreover, the recycling of sewage leads to carbon emissions reduction that offsets the carbon emissions generated during the operation of the sewage plant. Also, the carbon emissions generated by sewage treatment plants are lower than those generated by untreated sewage. The findings and insights provided in this paper provide valuable references for carbon accounting and the implementation of low-carbon practices in urban sewage treatment plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Anaerobiosis , Carbon Dioxide/analysis , Recycling
20.
Chemosphere ; 345: 140448, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839742

ABSTRACT

Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.


Subject(s)
Metals, Heavy , Microalgae , Humans , Wastewater , Symbiosis , Ecosystem , Metals, Heavy/analysis , Biomass , Water
SELECTION OF CITATIONS
SEARCH DETAIL