Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.394
Filter
1.
Nat Commun ; 15(1): 6497, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090084

ABSTRACT

Behavioral flexibility relies on the brain's ability to switch rapidly between multiple tasks, even when the task rule is not explicitly cued but must be inferred through trial and error. The underlying neural circuit mechanism remains poorly understood. We investigated recurrent neural networks (RNNs) trained to perform an analog of the classic Wisconsin Card Sorting Test. The networks consist of two modules responsible for rule representation and sensorimotor mapping, respectively, where each module is comprised of a circuit with excitatory neurons and three major types of inhibitory neurons. We found that rule representation by self-sustained persistent activity across trials, error monitoring and gated sensorimotor mapping emerged from training. Systematic dissection of trained RNNs revealed a detailed circuit mechanism that is consistent across networks trained with different hyperparameters. The networks' dynamical trajectories for different rules resided in separate subspaces of population activity; the subspaces collapsed and performance was reduced to chance level when dendrite-targeting somatostatin-expressing interneurons were silenced, illustrating how a phenomenological description of representational subspaces is explained by a specific circuit mechanism.


Subject(s)
Models, Neurological , Neural Networks, Computer , Animals , Nerve Net/physiology , Neurons/physiology , Interneurons/physiology , Brain/physiology , Humans
2.
Pak J Med Sci ; 40(6): 1105-1110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952537

ABSTRACT

Objective: To assess the effect of Traditional Chinese Medicine (TCM) nutrition treatment (Bushenhuoxue nutritional decoction) in overweight patients with polycystic ovary syndrome (PCOS). Methods: Retrospective analysis of 96 overweight patients with PCOS who received treatment in our hospital from October 2020 to June 2022 was done. Among them, 46 patients received routine drug treatment and daily dietary intervention (control group), while 50 patients received additional TCM nutrition support in addition to routine treatment (observation group). Glucose and lipid metabolism indicators and hormone levels were compared between the two groups before and after the treatment. Ovulation rate, pregnancy rate, and adverse reactions were compared between both groups one year after the treatment. Results: After treatment, the improvement of glucose and lipid metabolism indicators and hormone levels in the observation group was significantly better than in the control group (P<0.05). After treatment, the TCM syndrome scores of the two groups were lower than that before treatment (P < 0.001), and the TCM syndrome scores of the observation group was lower than that of the control group (P < 0.001).Ovulation and pregnancy rates were significantly higher in the observation group compared to the control group at 1-year follow up (P<0.05), and the incidence of adverse reactions in the observation group was significantly lower than that in the control group (P<0.05). Conclusions: Combined with conventional drug treatment, TCM nutrition treatment can significantly improve glucose and lipid metabolism, hormone levels, and TCM syndrome of overweight PCOS patients, increase the ovulation and pregnancy rates, and reduce potential adverse reactions.

3.
Arch Pharm (Weinheim) ; : e2400192, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961537

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-ß/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.

4.
J Pharm Anal ; 14(6): 100940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027912

ABSTRACT

Inhibiting the death receptor 3 (DR3) signaling pathway in group 3 innate lymphoid cells (ILC3s) presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis (UC). Paeoniflorin, a prominent component of Paeonia lactiflora Pall., has demonstrated the ability to restore barrier function in UC mice, but the precise mechanism remains unclear. In this study, we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s. C57BL/6 mice were subjected to random allocation into 7 distinct groups, namely the control group, the 2 % dextran sodium sulfate (DSS) group, the paeoniflorin groups (25, 50, and 100 mg/kg), the anti-tumor necrosis factor-like ligand 1A (anti-TL1A) antibody group, and the IgG group. We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry, respectively. Meanwhile, DR3-overexpressing MNK-3 cells and 2 % DSS-induced Rag1-/- mice were used for verification. The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier. Simultaneously, paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines (Interleukin-17A, Granulocyte-macrophage colony stimulating factor, and Interleukin-22). Alternatively, paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system. We additionally confirmed that paeoniflorin-conditioned medium (CM) restored the expression of tight junctions in Caco-2 cells via coculture. In conclusion, paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner, and its mechanism is associated with the inhibition of the DR3 signaling pathway.

6.
Plants (Basel) ; 13(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999718

ABSTRACT

Heat shock proteins (HSPs) are molecular chaperones that play essential roles in plant development and in response to various environmental stresses. Understanding R. delavayi HSP genes is of great importance since R. delavayi is severely affected by heat stress. In the present study, a total of 76 RdHSP genes were identified in the R. delavayi genome, which were divided into five subfamilies based on molecular weight and domain composition. Analyses of the chromosome distribution, gene structure, and conserved motif of the RdHSP family genes were conducted using bioinformatics analysis methods. Gene duplication analysis showed that 15 and 8 RdHSP genes were obtained and retained from the WGD/segmental duplication and tandem duplication, respectively. Cis-element analysis revealed the importance of RdHSP genes in plant adaptations to the environment. Moreover, the expression patterns of RdHSP family genes were investigated in R. delavayi treated with high temperature based on our RNA-seq data, which were further verified by qRT-PCR. Further analysis revealed that nine candidate genes, including six RdHSP20 subfamily genes (RdHSP20.4, RdHSP20.8, RdHSP20.6, RdHSP20.3, RdHSP20.10, and RdHSP20.15) and three RdHSP70 subfamily genes (RdHSP70.15, RdHSP70.21, and RdHSP70.16), might be involved in enhancing the heat stress tolerance. The subcellular localization of two candidate RdHSP genes (RdHSP20.8 and RdHSP20.6) showed that two candidate RdHSPs were expressed and function in the chloroplast and nucleus, respectively. These results provide a basis for the functional characterization of HSP genes and investigations on the molecular mechanisms of heat stress response in R. delavayi.

7.
BMC Psychiatry ; 24(1): 528, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048967

ABSTRACT

BACKGROUND: To evaluate the knowledge, attitude and practice of nurses regarding non-pharmacologic therapies for behavioral and psychological symptoms of dementia (BPSD). METHODS: This cross-sectional, questionnaire-based study enrolled nurses at Peking Union Medical College Hospital (Beijing, China) between September 2022 and October 2022. Correlations between knowledge, attitude and practice scores were evaluated by Pearson correlation analysis. Factors associated with knowledge, attitude and practice scores were identified by multivariable linear regression. Based on a cross-sectional questionnaire survey, this study designed a questionnaire according to the Guidelines for Diagnosis and Treatment of Dementia in China, and randomly selected nurses from Peking Union Medical College Hospital to fill in the questions through the Wen-Juan-Xing online platform from September 2022 to October 2022. RESULTS: The analysis included 210 nurses (202 females). The average knowledge, attitude and practice scores were 11.06±2.61 (total score: 18), 53.51±5.81 (total score: 60) and 64.66 ± 10.35 (total score: 80) points, respectively. Knowledge score was positively correlated with attitude score (r = 0.416, P < 0.001) and practice score (r = 0.389, P < 0.001); attitude and practice scores were also positively correlated (r = 0.627, P < 0.001). Multivariable analysis demonstrated that age ≥ 40 years-old (vs. ≤30 years-old) was associated with higher knowledge score (ß = 1.48, 95% confidence interval [95%CI] = 0.42-2.54, P = 0.006). Age ≥ 40 years-old (ß = 1.43, 95%CI = 0.35-2.51, P = 0.010 vs. ≤30 years-old) and bachelor's degree or higher (ß = 1.11, 95%CI = 0.12-2.10, P = 0.028 vs. college degree or lower) were associated with higher practice score. CONCLUSIONS: Older age and higher education level were associated with higher knowledge, attitude and/or practice scores. The findings of this study may help guide the development and implementation of education and training programs to improve the management of BPSD by nurses in China.


Subject(s)
Dementia , Health Knowledge, Attitudes, Practice , Humans , Female , Male , Dementia/nursing , Dementia/psychology , Cross-Sectional Studies , Adult , China , Surveys and Questionnaires , Attitude of Health Personnel , Middle Aged , Nurses/psychology , Young Adult , Nursing Staff, Hospital/psychology
8.
Chem Biol Drug Des ; 104(2): e14595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085939

ABSTRACT

Inhibition of SIRT3 exhibited potency in triggering leukemic cell differentiation. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound P6. A total of 33 compounds were designed and synthesized. In the enzyme inhibitory assay, several molecules S18, S26, S27 and T5 showed potent SIRT3 inhibitory activity with IC50 value of 0.53, 1.86, 5.06, and 2.88 µM, respectively. Moreover, the tested compounds exhibited SIRT3 inhibitory selectivity over SIRT1 and SIRT2. Compounds S27 and T5 were potent in inhibition the growth of MM1.S and RPMI-8226 cells in the in vitro antiproliferative test. Significantly, representative compounds, especially S27 and T5, promoted differentiation of tested MM cells in the cellular morphological evaluation, accompanied by increasing the expression of differentiation antigen CD49e and human immunoglobulin light chain lambda and kappa. Additionally, molecule S18 without antiproliferative potency itself, showed significant inhibitory activity against growth factor IL-6 induced RPMI-8226 cell proliferation. Collectively, potent SIRT3 selective inhibitors with MM cell differentiation potency were developed for further discovery of anticancer drugs.


Subject(s)
Antineoplastic Agents , Cell Differentiation , Cell Proliferation , Sirtuin 3 , Humans , Sirtuin 3/metabolism , Sirtuin 3/antagonists & inhibitors , Cell Differentiation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology , Molecular Docking Simulation
9.
Future Sci OA ; 10(1): 2340186, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39069888

ABSTRACT

Aim: This study aimed to explore using peripheral blood mononuclear cell (PBMC)-derived chimeric antigen receptor (CAR) NK cells targeting ROBO1 as a personalized medicine approach for ovarian cancer. Methods: A two-step strategy generated ROBO1-targeted CAR NK cells from PBMCs of ovarian cancer patients. Efficacy was evaluated using xCELLigence RTCA, CCK-8 and Live/Dead fluorescence assays. Results: ROBO1-NK cells exhibited higher efficiency in eradicating primary ovarian cancer cells and lysing ovarian tumor organoids compared with primary NK cells without ROBO1-CAR modification. Conclusion: These findings highlight the potential of developing ROBO1-targeted CAR-NK cells from patients' PBMCs as a personalized treatment option for ovarian cancer.


Ovarian cancer represents a formidable clinical challenge necessitating the urgent exploration of novel therapeutic approaches. In this study, the focus was directed toward ROBO1, a molecule known to play a pivotal role in cancer angiogenesis and metastasis, while limited investigation in the context of ovarian cancer. Leveraging this knowledge, we sought to construct ROBO1-targeting chimeric antigen receptor natural killer (CAR-NK) cells utilizing peripheral blood mononuclear cells derived from the patients themselves. The overarching goal of this investigation was to harness the potential of immunotherapy using autologous resources to realize personalized treatment strategies for ovarian cancer in clinical settings.

10.
Hepatology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985971

ABSTRACT

BACKGROUND AND AIMS: Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS: In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N -oxide-producing bacteria. Inhibition of trimethylamine N -oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2- Hif1a - Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS: Intestinal IL-33 enhanced gut microbiota-derived trimethylamine N -oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.

11.
J Cell Mol Med ; 28(12): e18373, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894657

ABSTRACT

Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Single-Cell Analysis/methods , Cell Line, Tumor , Gene Expression Profiling , DNA Copy Number Variations/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Communication/genetics
12.
ACS Med Chem Lett ; 15(6): 864-872, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38894924

ABSTRACT

We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.

13.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38871463

ABSTRACT

Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent hidden Markov model-generalized linear models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a win-stay, lose-shift strategy with interspecies similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.


Subject(s)
Macaca mulatta , Animals , Female , Male , Humans , Adult , Learning/physiology , Young Adult , Species Specificity , Choice Behavior/physiology , Reaction Time/physiology
14.
Adv Sci (Weinh) ; : e2403098, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898726

ABSTRACT

Wearing face masks is the best way to stop the spread of respiratory infections. However, if masks are not sterilized, changing them too frequently can actually increase the risk of cross-contamination. Herein, the construction of an antipathogen photocatalytic mask with carbon vacancy-modified carbon nitride nanosheets (g-C3N4-VC Ns) coated on the non-woven fabrics of the out layer of the mask, offering effective and long-term protection against damaging pathogens when exposed to light is reported. The introduced carbon vacancies are found capable of creating energy-disordered sites and inducing energetic electric force to overcome the Coulomb interactions between electron-hole pairs, thus promoting the electron-hole separation to achieve a high generation of reactive oxygen species (ROS). Thanks to its high activity in generating ROS upon exposure to light, the as-prepared photocatalytic mask shows high pathogen sterilization performance. This, in turn, prolongs the mask's protective lifetime, decreases the need for regular replacement, and decreases medical waste production. The work demonstrated here opens new viewpoints in designing pathogens biocidal protective devices for health protection, offering significant promise in specific environment self-protection.

15.
Medicine (Baltimore) ; 103(24): e38412, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875406

ABSTRACT

BACKGROUND: This study aimed to evaluate the impact of a resistance exercise program in the bedridden older adults in China. METHODS: The patients aged 80 years and above with stable diseases were randomly divided into control group (receiving routine treatment and nursing) and training group (receiving the elastic ball and elastic band training applied for 55 minutes, 3 times a week during 6 months). RESULTS: A total of 59 patients (control group: 30; training groups: 29) completed the study. In terms of muscle strength, the patients of the training group had better grip strength and supine leg lifts and 30-s sit-to-stand actions. In terms of cardiopulmonary function and glycolipid metabolism, the patients in the training groups had better lung capacity and high-density lipoprotein. CONCLUSION: The low-load and low-intensity resistance training may effectively improve not only the muscle strength of the bedridden older adults, but also the lung function and blood lipid metabolism.


Subject(s)
Glycolipids , Muscle Strength , Resistance Training , Humans , Male , Female , Muscle Strength/physiology , Resistance Training/methods , Aged, 80 and over , Glycolipids/metabolism , Bedridden Persons , China , Hand Strength/physiology , Respiratory Function Tests
16.
Curr Microbiol ; 81(7): 185, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771339

ABSTRACT

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.


Subject(s)
Bacteria , Polyethylene , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Polyethylene/chemistry , Polyesters/metabolism , Soil/chemistry , Soil Pollutants/analysis , Microbiota
17.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771244

ABSTRACT

The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.


Subject(s)
Callithrix , Cognition , Connectome , Macaca , Animals , Mice , Cognition/physiology , Nerve Net/physiology , Neural Pathways/physiology , Cerebral Cortex/physiology
18.
Sci Rep ; 14(1): 12228, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806610

ABSTRACT

DNA topoisomerase II alpha (TOP2A) expression, gene alterations, and enzyme activity have been studied in various malignant tumors. Abnormal elevation of TOP2A expression is considered to be related to the development of non-small cell lung cancer (NSCLC). However, its association with tumor metastasis and its mode of action remains unclear. Bioinformatics, real-time quantitative PCR, immunohistochemistry and immunoblotting were used to detect TOP2A expression in NSCLC tissues and cells. Cell migration and invasion assays as well as cytoskeletal staining were performed to analyze the effects of TOP2A on the motility, migration and invasion ability of NSCLC cells. Cell cycle and apoptosis assays were used to verify the effects of TOP2A on apoptosis as well as cycle distribution in NSCLC. TOP2A expression was considerably upregulated in NSCLC and significantly correlated with tumor metastasis and the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC. Additionally, by interacting with the classical ligand Wnt3a, TOP2A may trigger the canonical Wnt signaling pathway in NSCLC. These observations suggest that TOP2A promotes EMT in NSCLC by activating the Wnt/ß-catenin signaling pathway and positively regulates malignant events in NSCLC, in addition to its significant association with tumor metastasis. TOP2A promotes the metastasis of NSCLC by stimulating the canonical Wnt signaling pathway and inducing EMT. This study further elucidates the mechanism of action of TOP2A, suggesting that it might be a potential therapeutic target for anti-metastatic therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , DNA Topoisomerases, Type II , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Poly-ADP-Ribose Binding Proteins , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Cell Movement/genetics , Cell Line, Tumor , Neoplasm Metastasis , Wnt Signaling Pathway , Apoptosis , Male , Female , Middle Aged , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
19.
BMC Cancer ; 24(1): 633, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783271

ABSTRACT

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Lung Neoplasms , Neovascularization, Pathologic , Zinc Finger E-box-Binding Homeobox 1 , Humans , Epithelial-Mesenchymal Transition/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Male , Female , A549 Cells , Middle Aged
20.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741147

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Subject(s)
Antigens, Bacterial , Cell Proliferation , Mycobacterium tuberculosis , T-Lymphocytes , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL