Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.183
Filter
1.
ACS Nano ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946316

ABSTRACT

Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., >4.0 V vs Na+/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3-OP2 phase transition occurring in the voltage range of 2.0-4.3 V. Consequently, the cosubstituted NaLi1/9Ni1/3Mn4/9Ti1/9O2 exhibits an astounding capacity of 161.2 mAh g-1 in the voltage range of 2.0-4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.

2.
Chemosphere ; : 142594, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871186

ABSTRACT

The presence of microplastics (MPs) in water may affect the efficacy of the disinfection process and induce toxicity changes to MPs themselves during disinfection. Therefore, this study evaluated the two-way effects of polyethylene microplastic (MP) particles in water and wastewater during sodium hypochlorite (NaClO) disinfection. On the one hand, it has been confirmed that the presence of MPs reduced the disinfection efficiency of NaClO. The required CT (concentration of the disinfection × contact time) for a 2-4-log inactivation of Escherichia coli (E. coli) in different water samples was in the order of deionized water < turbid water (1 NTU) < water with MPs (1 mg/L) < turbid water (10 NTU). On the other hand, although exposure to MPs did induce significant changes in the activities of superoxide dismutase and glutathione, compared to pristine MPs, the MPs treated by NaClO at current conditions (0.3 and 3.0 mg/L for 30 min) did not show significant changes in their toxicity on zebrafish, at an MP exposure concentration of 1 mg/L. There was no significant difference in the survival rate and weight growth rate, neither as in the activities of the oxidative stress-related enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione s-transferase) in both gut and muscle tissues of the zebrafish, between exposure to the pristine and NaClO-treated MPs. It is indicated that NaClO disinfection commonly applied for water and wastewater treatment would not pose a serious concern to effluent safety in the presence of mild levels of MPs.

3.
BMJ ; 385: e075707, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862179

ABSTRACT

OBJECTIVE: To assess the effect of different antiplatelet strategies on clinical outcomes after coronary artery bypass grafting. DESIGN: Five year follow-up of randomised Different Antiplatelet Therapy Strategy After Coronary Artery Bypass Grafting (DACAB) trial. SETTING: Six tertiary hospitals in China; enrolment between July 2014 and November 2015; completion of five year follow-up from August 2019 to June 2021. PARTICIPANTS: 500 patients aged 18-80 years (including 91 (18.2%) women) who had elective coronary artery bypass grafting surgery and completed the DACAB trial. INTERVENTIONS: Patients were randomised 1:1:1 to ticagrelor 90 mg twice daily plus aspirin 100 mg once daily (dual antiplatelet therapy; n=168), ticagrelor monotherapy 90 mg twice daily (n=166), or aspirin monotherapy 100 mg once daily (n=166) for one year after surgery. After the first year, antiplatelet therapy was prescribed according to standard of care by treating physicians. MAIN OUTCOME MEASURES: The primary outcome was major adverse cardiovascular events (a composite of all cause death, myocardial infarction, stroke, and coronary revascularisation), analysed using the intention-to-treat principle. Time-to-event analysis was used to compare the risk between treatment groups. Multiple post hoc sensitivity analyses examined the robustness of the findings. RESULTS: Follow-up at five years for major adverse cardiovascular events was completed for 477 (95.4%) of 500 patients; 148 patients had major adverse cardiovascular events, including 39 in the dual antiplatelet therapy group, 54 in the ticagrelor monotherapy group, and 55 in the aspirin monotherapy group. Risk of major adverse cardiovascular events at five years was significantly lower with dual antiplatelet therapy versus aspirin monotherapy (22.6% v 29.9%; hazard ratio 0.65, 95% confidence interval 0.43 to 0.99; P=0.04) and versus ticagrelor monotherapy (22.6% v 32.9%; 0.66, 0.44 to 1.00; P=0.05). Results were consistent in all sensitivity analyses. CONCLUSIONS: Treatment with ticagrelor dual antiplatelet therapy for one year after surgery reduced the risk of major adverse cardiovascular events at five years after coronary artery bypass grafting compared with aspirin monotherapy or ticagrelor monotherapy. TRIAL REGISTRATION: NCT03987373ClinicalTrials.gov NCT03987373.


Subject(s)
Aspirin , Coronary Artery Bypass , Platelet Aggregation Inhibitors , Ticagrelor , Humans , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/administration & dosage , Female , Male , Middle Aged , Ticagrelor/therapeutic use , Aspirin/therapeutic use , Aspirin/administration & dosage , Aged , Follow-Up Studies , Adult , Aged, 80 and over , Drug Therapy, Combination , Adolescent , Postoperative Complications/prevention & control , Treatment Outcome , Young Adult , China , Dual Anti-Platelet Therapy/methods
4.
Adv Sci (Weinh) ; : e2401804, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924654

ABSTRACT

Covalent triazine frameworks (CTFs) are promising battery electrodes owing to their designable functional groups, tunable pore sizes, and exceptional stability. However, their practical use is limited because of the difficulty in establishing stable ion adsorption/desorption sites. In this study, a melt-salt-stripping process utilizing molten trichloro iron (FeCl3) is used to delaminate the layer-stacked structure of fluorinated covalent triazine framework (FCTF) and generate iron-based ion storage active sites. This process increases the interlayer spacing and uniformly deposits iron-containing materials, enhancing electron and ion transport. The resultant melt-FeCl3-stripped FCTF (Fe@FCTF) shows excellent performance as a potassium ion battery with a high capacity of 447 mAh g-1 at 0.1 A g-1 and 257 mAh g-1 at 1.6 A g-1 and good cycling stability. Notably, molten-salt stripping is also effective in improving the CTF's Na+ and Li+ storage properties. A stepwise reaction mechanism of K/Na/Li chelation with C═N functional groups is proposed and verified by in situ X-ray diffraction testing (XRD), ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculations, illustrating that pyrazines and iron coordination groups play the main roles in reacting with K+/Na+/Li+ cations. These results conclude that the Fe@FCTF is a suitable anode material for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs).

5.
Int J Surg ; 110(6): 3633-3640, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38935829

ABSTRACT

Fascial plane blocks (FPBs) are gaining popularity in clinical settings owing to their improved analgesia when combined with either traditional regional anesthesia or general anesthesia during the perioperative phase. The scope of study on FPBs has substantially increased over the past 20 years, yet the exact mechanism, issues linked to the approaches, and direction of future research on FPBs are still up for debate. Given that it can be performed at all levels of the spine and provides analgesia to most areas of the body, the erector spinae plane block, one of the FPBs, has been extensively studied for chronic rational pain, visceral pain, abdominal surgical analgesia, imaging, and anatomical mechanisms. This has led to the contention that the erector spinae plane block is the ultimate Plan A block. Yet even though the future of FPBs is promising, the unstable effect, the probability of local anesthetic poisoning, and the lack of consensus on the definition and assessment of the FPB's success are still the major concerns. In order to precisely administer FPBs to patients who require analgesia in this condition, an algorithm that uses artificial intelligence is required. This algorithm will assist healthcare professionals in practicing precision medicine.


Subject(s)
Nerve Block , Humans , Nerve Block/methods , Pain Management/methods , Anesthetics, Local/administration & dosage , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Fascia/innervation
6.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930973

ABSTRACT

The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g-1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g-1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1935-1949, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914502

ABSTRACT

Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.


Subject(s)
Nicotiana , Nicotiana/metabolism , Nicotiana/genetics , Synthetic Biology , Plants, Genetically Modified/metabolism , Metabolic Engineering/methods , Cell Culture Techniques/methods , Nicotine/metabolism , Nicotine/biosynthesis , Biomass
8.
Chemosphere ; 362: 142675, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908442

ABSTRACT

6PPD and its oxidation product, 6PPD-quinone have garnered widespread attention due to their adverse effects on aquatic ecosystems and human health, and are recognized as emerging pollutants. In this study, we investigated the interaction mechanism between 6PPD/6PPD-quinone and human serum albumin (HSA) through various experiments. Experimental findings reveal that the IC50 values of 6PPD-quinone and 6PPD against HEK293T cells were 11.78 and 40.04 µM, respectively. Additionally, the cytotoxicity of these compounds was regulated by HSA, displaying an inverse correlation with their binding affinity to HSA. Furthermore, 6PPD/6PPD-quinone can spontaneously insert into site I on HSA, forming a binary complex that induces changes in the secondary structure of HSA. However, their effects on the esterase-like activity of HSA exhibit a dichotomy. While 6PPD activates the esterase-like activity of HSA, 6PPD-quinone inhibits it. Molecular docking analyses reveal that both 6PPD and 6PPD-quinone interact with many amino acid residues on HSA, including TRP214, ARG222, ARG218, ALA291, PHE211. The π electrons on the benzene rings of 6PPD/6PPD-quinone play pivotal roles in maintaining the stability of complexes. Moreover, the stronger binding affinity observed between 6PPD and HSA compared to 6PPD-quinone, may be attributed to the larger negative surface potential of 6PPD.

9.
Dig Liver Dis ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890059

ABSTRACT

BACKGROUNDS: The efficacy of endoscopic submucosal dissection (ESD) to treat poorly differentiated superficial esophageal squamous cell carcinoma (SESCC) is unclear. AIMS: To exploring the efficacy and prognosis of ESD treatment poorly differentiated SESCC compared with esophagectomy. METHODS: A retrospective cohort study was conducted, the data of poorly differentiated SESCC patients who received ESD or esophagectomy from Jan 2011 to Jan 2021 were analyzed. Overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS), and procedure-related variables were compared between ESD and esophagectomy group. RESULTS: 95 patients underwent ESD, while 86 underwent esophagectomy. No significant differences were found between the two groups in OS (P = 0.587), DSS (P = 0.172), and RFS (P = 0.111). Oncologic outcomes were also similar between the two groups in propensity score-matched analysis. For T1a ESCC, the rates of R0 resection, LVI or nodal metastasis and additional therapy were similar between ESD and esophagectomy groups. But for T1b ESCC, the rates of positive resection margin and additional therapy were significantly higher in ESD group than those in esophagectomy group. CONCLUSIONS: ESD is a minimally invasive procedure that has comparable oncologic outcomes with esophagectomy for treatment poorly differentiated T1a ESCC. However, ESD is not suitable for poorly differentiated T1b ESCC, additional surgery or radiochemotherapy should be required.

10.
Diabetes Metab J ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853519

ABSTRACT

Background: Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats. Methods: T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies. Results: Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk. Conclusion: BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.

11.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829390

ABSTRACT

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

12.
Theranostics ; 14(8): 3267-3281, 2024.
Article in English | MEDLINE | ID: mdl-38855181

ABSTRACT

Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.


Subject(s)
Blood Platelets , Hemorrhage , Serum Albumin, Human , Thrombosis , Animals , Mice , Thrombosis/prevention & control , Thrombosis/drug therapy , Humans , Hemorrhage/prevention & control , Blood Platelets/drug effects , Blood Platelets/metabolism , Disease Models, Animal , Male , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Infarction/drug therapy , Mice, Inbred C57BL , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
13.
Oncogene ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858590

ABSTRACT

Advanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs. To understand MLK3's role in HCC, we utlized carcinogen-induced HCC model and compared between wild-type and MLK3 knockout (MLK3-/-) mice. Our studies showed that MLK3 kinase activity is upregulated in HCC, and MLK3 deficiency alleviates HCC progression. MLK3 deficiency reduced proliferation in vivo and MLK3 inhibition reduced proliferation and colony formation in vitro. To obtain further insight into the mechanism and identify newer targets mediating MLK3-induced HCCs, RNA-sequencing analysis was performed. These showed that MLK3 deficiency modulates various gene signatures, including EMT, and reduces TGFB1&2 expressions. HCC cells overexpressing MLK3 promoted EMT via autocrine TGFß signaling. Moreover, MLK3 deficiency attenuated activated hepatic stellate cell (HSC) signature, which is increased in wild-type. Interestingly, MLK3 promotes HSC activation via paracrine TGFß signaling. These findings reveal TGFß playing a key role at different steps of HCC, downstream of MLK3, implying MLK3-TGFß axis to be an ideal drug target for advanced HCC management.

14.
Food Chem ; 457: 140028, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917561

ABSTRACT

The gold standard of milk is human milk, not cow milk. The present study expects to explored the comprehensive nutritional value of different kinds of milk and the differences between them through multi-omics analysis and found functional components that are more similar to human milk. This study employed untargeted LC-MS/MS metabolomics, untargeted LC-MS/MS lipidomics, and 4D label-free proteomics analysis techniques. The findings revealed substantial disparities in metabolites, lipids, and proteins among the five types of milk. Notably, pig milk exhibited a remarkable abundance of N-acetylneuraminic acid (Neu5Ac) and specific polar lipids. Yak milk stood out with significantly elevated levels of creatine and lipoprotein lipase (LPL) compared to other species. Buffalo milk boasted the highest concentrations of L-isoleucine, echinocystic acid, and alkaline phosphatase, tissue-nonspecific isozyme (ALPL). The concentrations of iminostilbene and osteopontin (OPN) were higher in cow milk.

15.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891923

ABSTRACT

The ocular glymphatic system subserves the bidirectional polarized fluid transport in the optic nerve, whereby cerebrospinal fluid from the brain is directed along periarterial spaces towards the eye, and fluid from the retina is directed along perivenous spaces following upon its axonal transport across the glial lamina. Fluid homeostasis and waste removal are vital for retinal function, making the ocular glymphatic fluid pathway a potential route for targeted manipulation to combat blinding ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Several lines of work investigating the bidirectional ocular glymphatic transport with varying methodologies have developed diverging mechanistic models, which has created some confusion about how ocular glymphatic transport should be defined. In this review, we provide a comprehensive summary of the current understanding of the ocular glymphatic system, aiming to address misconceptions and foster a cohesive understanding of the topic.


Subject(s)
Glymphatic System , Humans , Glymphatic System/physiology , Glymphatic System/metabolism , Animals , Optic Nerve/metabolism , Optic Nerve/physiology , Retina/metabolism , Retina/physiology , Eye/metabolism , Glaucoma/metabolism , Glaucoma/physiopathology , Glaucoma/pathology
16.
J Hazard Mater ; 474: 134794, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850929

ABSTRACT

As lithium metal resource supply and demand stabilize and prices decrease, the efficient recovery of valuable metals other than lithium from spent lithium-ion batteries is receiving increasing attention. Currently, challenges remain in the selective lithium recovery efficiency and the high cost of regenerating valuable metal slag after lithium extraction, particularly for spent ternary cathode materials. To address these challenges, this study introduces a closed-loop recovery process for spent ternary cathode materials, employing sulfur-assisted roasting to achieve efficient lithium extraction and high-value direct regeneration of ternary leaching residues. At moderate temperatures (500 â„ƒ), LiNixCoyMn1-x-yO2 (NCM) materials undergo a directional transformation of lithium to Li2SO4 in synergy with sulfur and oxygen, achieving a lithium leaching extraction rate of 98.91 %. Additionally, the relatively mild reaction conditions preserve the secondary spherical morphology and uniform distribution of NiCoMn-based oxide residue without introducing adverse impurities, ensuring the successful regeneration of high-value NCM cathode materials (R-NCM). The R-NCM material exhibits good discharge capacity (144.3 mA·h/g at 1 C) and relatively stable cycling performance, with a capacity retention rate of 80 % after 150 cycles. This work provides a viable pathway for the efficient and environmental-friendly pyrometallurgical closed-loop recovery of spent lithium-ion batteries.

17.
Atherosclerosis ; 395: 117575, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38851155

ABSTRACT

BACKGROUND AND AIMS: Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS: We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS: We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS: Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.

18.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772462

ABSTRACT

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Subject(s)
Acetates , Cyclopentanes , Fallopia japonica , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Proteins , Resveratrol , Transcription Factors , Transcriptome , Resveratrol/metabolism , Resveratrol/pharmacology , Fallopia japonica/metabolism , Fallopia japonica/genetics , Acetates/pharmacology , Acetates/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects
19.
Oncol Lett ; 28(1): 294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38737980

ABSTRACT

Flurbiprofen axetil or dezocine monotherapy has been applied for analgesia of postoperative non-small cell lung cancer (NSCLC); however, their combination is rarely investigated. Consequently, the present study aimed to explore the effect of flurbiprofen axetil plus dezocine on postoperative pain, surgical outcomes and its safety profile in patients with NSCLC. A total of 150 patients with resectable NSCLC were enrolled and randomized into three groups: i) The flurbiprofen axetil plus dezocine group (n=50), ii) the flurbiprofen axetil group (n=51) and iii) the dezocine group (n=49). A total of 50 mg flurbiprofen axetil, 5 mg of dezocine or their combination were administered intravenously 3 h prior to surgery and subsequently every 12 h until day 3 (D3) following surgery. The postoperative pain was lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil group at 6 h (P=0.008), 12 h (P=0.003), day 1 (D1) (P=0.013), day 2 (D2) (P=0.036) and D3 (P=0.010); in addition, it was lower in the flurbiprofen axetil plus dezocine group compared with that of the dezocine group at 6 h (P=0.010), 12 h (P=0.012) and D1 (P=0.020). Patient-controlled analgesia consumption was also lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil (P=0.010) and dezocine (P=0.002) groups. Furthermore, the length of hospital stay was lower in the flurbiprofen axetil plus dezocine group compared with that of the flurbiprofen axetil (P=0.008) and dezocine (P=0.048) groups, while other surgical outcomes and adverse events were similar among these three groups. Moreover, the expression of tumor necrosis factor-α was lower in the flurbiprofen axetil plus dezocine group compared with that of the dezocine group at 12 h (P<0.001), D1 (P<0.001) and D3 (P=0.033). The data indicated that flurbiprofen axetil and dezocine combination was superior to monotherapy for postoperative analgesia in patients with resectable NSCLC.

20.
Lung ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753182

ABSTRACT

BACKGROUND: Free fatty acids (FFAs) are established risk factors for various cardiovascular and metabolic disorders. Elevated FFAs can trigger inflammatory response, which may be associated with the occurrence of acute respiratory distress syndrome (ARDS) in cardiac surgery. In this prospective study, we aimed to investigate the association between circulating FFA and the incidence of ARDS, as well as the length of ICU stay, in patients undergoing off-pump coronary artery bypass grafting (CABG). METHODS: We conducted a single-center, prospective, observational study among patients undergoing off-pump CABG. The primary endpoint was the occurrence of ARDS within 6 days after off-pump CABG. Serum FFA were measured at baseline and 24 h post-procedure, and the difference (Δ-FFA) was calculated. RESULTS: A total of 180 patients were included in the primary analysis. The median FFA was 2.3 mmol/L (quartile 1 [Q1]-Q3, 1.4-3.2) at baseline and 1.5 mmol/L (Q1-Q3, 0.9-2.3) 24 h after CABG, with a Δ-FFA of 0.6 mmol/L (Q1-Q3, -0.1 to 1.6). Patients with elevated Δ-FFA levels had a significantly higher ARDS occurrence (55.6% vs. 22.2%; P < 0.001). Elevated Δ-FFA after off-pump CABG correlated with a significantly lower PaO2/FiO2 ratio, prolonged mechanical ventilation, and extended length of ICU stay. The area under the curve (AUC) of Δ-FFA for predicting ARDS (AUC, 0.758; 95% confidence interval, 0.686-0.831) significantly exceeded the AUC of postoperative FFA (AUC, 0.708; 95% CI 0.628-0.788; P < 0.001). CONCLUSIONS: Elevated Δ-FFA levels correlated with ARDS following off-pump CABG. Monitoring FFA may assist in identifying high-risk patients for ARDS, facilitating timely interventions to improve clinical outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...