Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Environ Sci Technol ; 58(25): 11140-11151, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38867458

ABSTRACT

Microplastic records from lake cores can reconstruct the plastic pollution history. However, the associations between anthropogenic activities and microplastic accumulation are not well understood. Huguangyan Maar Lake (HML) is a deep-enclosed lake without inlets and outlets, where the sedimentary environment is ideal for preserving a stable and historical microplastic record. Microplastic (size: 10-500 µm) characteristics in the HML core were identified using the Laser Direct Infrared Imaging system. The earliest detectable microplastics appeared unit in 1955 (1.1 items g-1). The microplastic abundance ranged from n.d. to 615.2 items g-1 in 1955-2019 with an average of 134.9 items g-1. The abundance declined slightly during the 1970s and then increased rapidly after China's Reform and Opening Up in 1978. Sixteen polymer types were detectable, with polyethylene and polypropylene dominating, accounting for 23.5 and 23.3% of the total abundance, and the size at 10-100 µm accounted for 80%. Socioeconomic factors dominated the microplastic accumulation based on the random forest modeling, and the contributions of GDP per capita, plastic-related industry yield, and total crop yield were, respectively, 13.9, 35.1, and 9.3% between 1955-2019. The total crop yield contribution further increased by 1.7% after 1978. Coarse sediment particles increased with soil erosion exacerbated microplastics discharging into the sediment.


Subject(s)
Environmental Monitoring , Lakes , Microplastics , China , Microplastics/analysis , Water Pollutants, Chemical/analysis , Plastics , Geologic Sediments/chemistry
2.
mSystems ; 9(6): e0021424, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780275

ABSTRACT

The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.


Subject(s)
Chickens , Fatty Acids, Volatile , Gastrointestinal Microbiome , Glucose , Lactobacillus , Animals , Chickens/metabolism , Chickens/microbiology , Glucose/metabolism , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Lactobacillus/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Energy Metabolism , Fecal Microbiota Transplantation
3.
Biotechnol Bioeng ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778433

ABSTRACT

Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.

4.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554953

ABSTRACT

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Phthalic Acids , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Economic Development
5.
Environ Sci Process Impacts ; 26(1): 94-104, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050819

ABSTRACT

Liquid crystal monomers (LCMs), a group of synthetic chemicals released from liquid crystal devices such as televisions and smartphones, have recently been recognized as emerging contaminants due to their widespread occurrence in the environment and potential negative impacts on human health. Airborne LCMs can undergo atmospheric oxidation reactions to form various transformation products. Despite the certainty of atmospheric transformation chemistry, the knowledge about the hazard properties of transformation products remains largely unknown. Here, we perform an in silico model-based evaluation of the persistence, bioaccumulation potential, mobility, and toxicity of two representative LCMs, namely, 1-ethyl-4-(4-(4-propylcyclohexyl)phenyl)benzene and 4''-ethyl-2'-fluoro-4-propyl-1,1':4',1''-terphenyl, and their transformation products. We found that, among the investigated transformation products, 38% have overall persistence greater than the minimum of 331 days among the persistent organic pollutants regulated by the Stockholm Convention, 62% meet the bioaccumulation threshold of 1000 L kg-1 used by the United States Environmental Protection Agency, 44% are classified "mobile" according to the criterion used by the German Environmental Agency, and 58% have the potential to induce unacceptable toxic effects in aquatic organisms. Furthermore, we identified several transformation products with increased persistence, bioaccumulation potential, and mobility compared to their parent compounds. These findings not only offer insights for prioritizing LCM transformation products for future risk assessment, but also underscore the significance of considering atmospheric transformation in the evaluation of environmental risks posed by emerging contaminants, including LCMs.


Subject(s)
Liquid Crystals , Water Pollutants, Chemical , Humans , United States , Water Pollutants, Chemical/analysis , Oxidation-Reduction
6.
J Zhejiang Univ Sci B ; 24(11): 1014-1026, 2023 Sep 22.
Article in English, Chinese | MEDLINE | ID: mdl-37961803

ABSTRACT

Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-|κB (NF|-|κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.


Subject(s)
Antioxidants , Gastrointestinal Microbiome , Animals , Swine , Antioxidants/pharmacology , Chickens , Interleukin-10/metabolism , Interleukin-10/pharmacology , Interleukin-4/metabolism , Interleukin-4/pharmacology , NF-kappa B/metabolism , Immunity , Diet/veterinary , Animal Feed/analysis , Dietary Supplements/analysis
7.
J Zhejiang Univ Sci B ; : 1-13, 2023 Sep 22.
Article in English, Chinese | MEDLINE | ID: mdl-37735944

ABSTRACT

Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-|κB (NF|-|κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.

8.
Environ Res ; 235: 116690, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37474088

ABSTRACT

Lake sediment is a natural sink for polycyclic aromatic hydrocarbons (PAHs). PAH sedimentation characteristics and their impact factors of Chinese lakes have mainly been qualitative assessed. However, quantitative impacts of PAH sedimentation from different factors have not been well analyzed. To fill this gap, we screened PAH sedimentation records from the literature, for 51 lakes in China and other regions of the world, to identify historical concentration variation and the impact factors of PAHs in different regions, in lake sediment. The results show that PAH concentrations in the sediment core in the selected Chinese lakes (478 ± 812 ng/g dry weight (dw)) were significantly lower than those in North America (5518 ± 6572 ng/g dw) and Europe (3817 ± 4033 ng/g dw). From 1900 to 2015, most of the lakes in China showed an increasing trend of PAH sedimentation concentrations, with the lakes in Southeastern China showed a decreasing trend of PAH concentration in the period of 2001-2015, which was later than the peak times shown in Western countries (1941-1970). The 2-3-ring PAHs were the main components in the sediment core of Chinese lakes, but the proportion to the total PAHs decreased from 72% in 1900-1940 to 55% in 2001-2015. Generalized additive modeling (GAM) was adopted to simulate the associations between PAH sedimentation records and the impact factors. There are large regional variations of economic and industrial development in China. The impact factors of PAH accumulation in the lake sediments differ in different regions. However, population and the consumption of coal, pesticides, and fertilizer were identified to be the most important impact factors influencing PAH sedimentation. The Chinese government needs to strengthen control measures on pollutant discharge to reduce the anthropogenic impact of PAH sedimentation in lakes.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Lakes , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments , China
9.
AMIA Jt Summits Transl Sci Proc ; 2023: 525-533, 2023.
Article in English | MEDLINE | ID: mdl-37350880

ABSTRACT

Amyloid imaging has been widely used in Alzheimer's disease (AD) diagnosis and biomarker discovery through detecting the regional amyloid plaque density. It is essential to be normalized by a reference region to reduce noise and artifacts. To explore an optimal normalization strategy, we employ an automated machine learning (AutoML) pipeline, STREAMLINE, to conduct the AD diagnosis binary classification and perform permutation-based feature importance analysis with thirteen machine learning models. In this work, we perform a comparative study to evaluate the prediction performance and biomarker discovery capability of three amyloid imaging measures, including one original measure and two normalized measures using two reference regions (i.e., the whole cerebellum and the composite reference region). Our AutoML results indicate that the composite reference region normalization dataset yields a higher balanced accuracy, and identifies more AD-related regions based on the fractioned feature importance ranking.

10.
AMIA Jt Summits Transl Sci Proc ; 2023: 544-553, 2023.
Article in English | MEDLINE | ID: mdl-37350896

ABSTRACT

STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.

11.
Sci Total Environ ; 888: 164271, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37209748

ABSTRACT

The native saltmarsh species Scirpus mariqueter (hereafter S. mariqueter) and the exotic species saltmarsh cordgrass (Spartina alterniflora Loisel., hereafter S. alterniflora), have been found commonly in regional saltmarsh ecosystems which received a large amount of sediment inputs from Yangtze River, eastern coasts of China. For the purpose of saltmarsh restoration and invasive species management, it is important to understand the response of vegetation species to various sediment inputs. This study investigated and compared the effects of sediment addition on S. mariqueter and S. alterniflora through laboratory experiment using vegetation samples collected from a natural saltmarsh with a high sedimentation rate (12 cm a-1). Plant growth parameters over their growth period, including survival rate, height and biomass were measured against sediment addition gradient (0 cm, 3 cm, 6 cm, 9 cm, and 12 cm in thickness). The results showed that sediment addition significantly affected the growth of vegetation but this effect varied between two species. Compared with the control group, the growth of S. mariqueter was promoted with sediment addition of 3-6 cm, but it turned to inhibition when the sediment thickness exceeded 6 cm. The growth of S. alterniflora was increased with increasing sediment addition till 9-12 cm, but the survival rate of each group kept stable. Overall, against a gradient sediment addition, S. mariqueter was found to benefit from low to moderate sediment addition (3-6 cm) but higher addition showed inhabitation effects. S. alterniflora benefited from increasing sediment addition to a point. When facing high sediment inputs, S. alterniflora was found to be more adaptable than S. mariqueter. These results have important implications for further studies on saltmarsh restoration and interspecific competition against a high sediment input background.


Subject(s)
Ecosystem , Wetlands , Poaceae , Biomass , Rivers , China , Introduced Species
12.
J Anim Sci Biotechnol ; 14(1): 4, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36604758

ABSTRACT

BACKGROUND: The interaction between nutrition and immunity plays a vital role in nutrient digestion, absorption, and metabolism during poultry production. Recent studies showed that the gut microbiota contributes to the development of intestinal mucosal immunity. However, the mechanisms by which gut microbes regulate this process remain unclear. METHODS: We compared the intestinal mucosal immunity and gut microbiota of Arbor Acre broilers (AA (lower mucosal immunity) and Chinese native Wuliang Mountain Black-bone chickens (WLMB) (higher mucosal immunity) using 16S rDNA sequencing, transcriptomic analysis, and immunoglobulin A (IgA) antibody repertoire sequencing. We then combined 16S rDNA sequencing with transcriptomics to identify the key microbes and found that they were positively correlated with IgA production. Next, we transplanted candidate microbes into 1-day-old broiler to explore their role in intestinal mucosal immunity. Finally, we verified the function of candidate microbial metabolites in regulating the immune function of macrophages and the intestinal-epithelial cells (IECs) using in vitro experiments. RESULTS: WLMB performs stronger mucosal immunity than AA, including higher IgA levels, more diverse IgA antibody repertoire, and higher bacterial affinity. Bacteroides was identified as the key microbes related to the intestinal IgA response. Bacteroides transplantation could increase IgA concentration in the duodenal contents by enhancing the expression of IgA, polymeric immunoglobin receptor (PIgR), B cell-activating factor of the TNF family (BAFF), and activation-induced cytidine deaminase (AID) in the duodenum. Additionally, Bacteroides-derived isovaleric acid promoted M2 macrophage polarization of macrophage via mTOR/PPAR-γ/STAT3 signaling pathways and regulated the immunologic function of IECs to produce cytokines, including interleukin (IL)-10, IL-4, BAFF, and transforming growth factor-beta (TGF-ß), thus promoting IgA production in B cells by facilitating AID expression. CONCLUSION: Our study revealed that Bacteroides modulate the intestinal IgA response and maintain gut health in broilers. Bacteroides may be a promising alternative as an immunomodulatory microbial agent for developing next-generation probiotics for broiler production.

13.
Int J Numer Method Biomed Eng ; 39(11): e3647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36166288

ABSTRACT

Prediction of blood cell flow is known as the difficult research by reason of the complexity of blood vessel. In this study, considering the complex structure of blood vessels, a mechanical model for red blood cell (RBC) based on unstructured grid has been established to study the flow characteristics of RBCs in complex blood vessels. In the model, the strain-energy function by Skalak is employed to model the shear elasticity and surface-area conservation of the membrane, and the hinge spring is used to describe the forces originating from local bending of the membrane. The immersed boundary method is utilized to couple the interphase force. Using the model, the stretching test of RBC is compared with the experiment data, and the good agreement verified the validation of the present model. The morphology of red blood cell and the blood viscosity in micro-vessel are studied. RBCs move with a symmetric shape (parachute shape) in small blood vessels, and the buckling instability is observed when the RBC flow slowly through a micro-vessel or a converging-diverging capillary. When the vessel diameter is around 10 µm, the reverse Fahraeus-Lindqvist effect is presented. The blood apparent viscosity shows linear increase with the blood hematocrit. In addition, Malaria infection can make the RBC deformability decreased and the blood apparent viscosity increased.


Subject(s)
Erythrocyte Deformability , Erythrocytes , Hematocrit , Hemodynamics , Capillaries
14.
Sci Rep ; 12(1): 18664, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333318

ABSTRACT

Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.


Subject(s)
Culex , Mosquito Vectors , Animals , Humans , Neural Networks, Computer
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 682-685, 2022 07.
Article in English | MEDLINE | ID: mdl-36085872

ABSTRACT

Tremor in Parkinson's disease (PD) is caused by synchronized activation bursts in limb muscles. Deep Brain Stimulation (DBS) is an effective clinical therapy for inhibiting tremor and improving movement disorders in PD patients. However, the neural mechanism of how tremor symptom is suppressed by DBS at motor unit (MU) level remains unclear. This paper developed a data acquisition platform for collecting physiological data in PD patients. Both high-density surface Electromyography (HD-sEMG) and kinematics data were collected concurrently before and after DBS surgery. The MU behaviors were obtained via HD-sEMG decomposition algorithm to reveal the effect of DBS on PD tremor. A data set of one tremor dominant PD patient acquired in pre-operation and post-operation (DBS-on) phases was analyzed. Preliminary results showed significant changes in MU firing rate and MU synchronization. The analysis approach introduced in this paper provides a novel perspective for studying the neural mechanism of DBS as revealed by MU activities. Clinical Relevance- This study presented an approach to investigate the effect of DBS therapy on improving tremor disorder of PD patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Algorithms , Electromyography , Humans , Parkinson Disease/therapy , Tremor/etiology , Tremor/therapy
16.
Anim Nutr ; 9: 84-99, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949981

ABSTRACT

The gut microbiome has great effects on the digestion, absorption, and metabolism of lipids. However, the microbiota composition that can alter the fat deposition and the meat quality of pigs remains unclear. Here, we used Laiwu (LW) pigs (a native Chinese breed with higher intramuscular fat) compared with commercial crossbreed Duroc × (Landrace × Yorkshire) (DLY) pigs to investigate the effects of microbiota on meat quality, especially in intramuscular fat content. A total of 32 DLY piglets were randomly allotted to 4 groups and transplanted with fecal microbiota from healthy LW pigs. The results indicated that the high dose of fecal microbiota transplantation (HFMT) selectively enhanced fat deposition in longissimus dorsi (P < 0.05) but decreased backfat thickness (P < 0.05) compared with control group. HFMT significantly altered meat color and increased feed conversation ratio (P < 0.05). Furthermore, the multi-omics analysis revealed that Bacteroides uniformis, Sphaerochaeta globosa, Hydrogenoanaerobacterium saccharovorans, and Pyramidobacter piscolens are the core species which can regulate lipid deposition. A total of 140 male SPF C57BL/6j mice were randomly allotted into 7 groups and administrated with these 4 microbes alone or consortium to validate the relationships between microbiota and lipid deposition. Inoculating the bacterial consortium into mice increased intramuscular fat content (P < 0.05) compared with control mice. Increased expressions of lipogenesis-associated genes including cluster of differentiation 36 (Cd36), diacylglycerol O-acyltransferase 2 (Dgat2), and fatty acid synthase (FASN) were observed in skeletal muscle in the mice with mixed bacteria compared with control mice. Together, our results suggest that the gut microbiota may play an important role in regulating the lipid deposition in the muscle of pigs and mice.

17.
Emerg Infect Dis ; 28(8): 1703-1707, 2022 08.
Article in English | MEDLINE | ID: mdl-35820171

ABSTRACT

Although reports of human infection with influenza A(H5N6) increased in 2021, reports of similar H5N6 virus infection in poultry are few. We detected 10 avian influenza A(H5N6) clade 2.3.4.4b viruses in poultry from 4 provinces in China. The viruses showed strong immune-escape capacity and complex genetic reassortment, suggesting further transmission risk.


Subject(s)
Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Birds , China/epidemiology , Humans , Influenza A virus/genetics , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Phylogeny , Poultry , Reassortant Viruses/genetics
18.
Autophagy ; 18(12): 2799-2816, 2022 12.
Article in English | MEDLINE | ID: mdl-35266843

ABSTRACT

Amino acids play crucial roles in the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) pathway. However, the underlying mechanisms are not fully understood. Here, we establish a cell-free system to mimic the activation of MTORC1, by which we identify CANX (calnexin) as an essential regulator for leucine-stimulated MTORC1 pathway. CANX translocates to lysosomes after leucine deprivation, and its loss of function renders either the MTORC1 activity or the lysosomal translocation of MTOR insensitive to leucine deprivation. We further find that CANX binds to LAMP2 (lysosomal associated membrane protein 2), and LAMP2 is required for leucine deprivation-induced CANX interaction with the Ragulator to inhibit Ragulator activity toward RRAG GTPases. Moreover, leucine deprivation promotes the lysine (K) 525 crotonylation of CANX, which is another essential condition for the lysosomal translocation of CANX. Finally, we find that KAT7 (lysine acetyltransferase 7) mediates the K525 crotonylation of CANX. Loss of KAT7 renders the MTORC1 insensitivity to leucine deprivation. Our findings provide new insights for the regulatory mechanism of the leucine-stimulated MTORC1 pathway.Abbreviations: CALR: calreticulin; CANX: calnexin; CLF: crude lysosome fraction; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; GST: glutathione S-transferase; HA: hemagglutinin; HEK293T: human embryonic kidney-293T; KAT7: lysine acetyltransferase 7; Kcr; lysine crotonylation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAMTOR/Ragulator: late endosomal/lysosomal adaptor: MAPK and MTOR activator; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PTM: post-translational modification; RPS6KB1/p70S6 kinase 1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; SESN2: sestrin 2; TMEM192: transmembrane protein 192; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
Autophagy , Calnexin , Lysine Acetyltransferases , Mechanistic Target of Rapamycin Complex 1 , Humans , Calnexin/metabolism , HEK293 Cells , Leucine/pharmacology , Leucine/metabolism , Lysine/metabolism , Lysine Acetyltransferases/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction
19.
Materials (Basel) ; 15(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057161

ABSTRACT

Combined with microstructure characterization and properties tests, the effects of Zn contents on the mechanical properties, corrosion behaviors, and microstructural evolution of extruded Al-Li-Cu-Mg-Ag alloys were investigated. The results show that the increase in Zn contents can accelerate hardening kinetics and improve the hardness of peak-aged alloys. The Zn-added alloys present non-recrystallization characteristics combined with partially small recrystallized grains along the grain boundaries, while the T1 phase with finer dimension and higher number density could explain the constantly increasing tensile strength. In addition, increasing Zn contents led to a lower corrosion current density and a shallower maximum intergranular corrosion depth, thus improving the corrosion resistance of the alloys. Zn addition, distributed in the central layer of T1 phases, not only facilitates the precipitation of more T1 phases but also reduces the corrosion potential difference between the T1 phase and the matrix. Therefore, adding 0.57 wt.% Zn to the alloy has an excellent combination of tensile strength and corrosion resistance. The properties induced by Zn under the T8 temper (solid solution treatment + water quenching + 5% pre-strain+ isothermal aging), however, are not as apparent as the T6 temper (solid solution treatment + water quenching + isothermal aging).

20.
Sci Total Environ ; 809: 151101, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34688734

ABSTRACT

Phthalate pollution in plastic greenhouses (PGs) has aroused concerns. However, mechanisms and factors of vegetables planted in PGs (VPGs) accumulating phthalates from soil and air are unclear. To fill the gap, 19 PGs in Shaanxi, the largest vegetable production province in northwestern China, were selected to probe this issue. 35 soil samples, 48 air samples, and 26 VPG samples were collected in winter and summer. Medians of sum of 7 phthalate concentrations (∑7 PAEs) in PG soil, air, and VPGs were 73.9 µg kg-1, 5300 ng m-3, and 1053 µg kg-1 dry weight, respectively. ∑7 PAE concentrations in PG environmental media in winter were higher than summer, with the significant difference in VPGs. Sum concentrations of bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) accounted for 76.8% and 82.3% of the ∑7 PAEs in soil and VPGs. DnBP and DEHP concentrations in VPGs were significantly correlated to those in air and soil, with correlation coefficients (R) of 0.89 and 0.96 to air and 0.68 and 0.59 to soil. Log-transformed soil-air partition coefficient (log KSA) and fugacity fraction (log ff) of DnBP decreased while log KSA and log ff of DEHP increased from winter to summer, though DnBP in soil volatilized to air while DEHP in air sank to soil within the year. These issues were caused by air temperature changes and the application of plastic films. Furthermore, DnBP concentrations in VPGs were positively correlated to KSA values of DnBP (R = 0.87) while those of DEHP were negative (R = -0.82). Therefore, VPGs could uptake more phthalates from air than from soil, especially for edible parts of leafy and solanaceous VPGs. Applying phthalates free agricultural films and precision management such as adjusting air temperature in PGs could be considered to ensure VPG safeties.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , China , Dibutyl Phthalate/analysis , Esters/analysis , Phthalic Acids/analysis , Plastics , Soil , Soil Pollutants/analysis , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...