Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Sci Total Environ ; : 175150, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089379

ABSTRACT

BACKGROUND: Maternal smoking during pregnancy (MSDP) is significantly linked to the short- or long-term health of offspring. However, little research has examined whether MSDP affect the aging rate of offspring. METHODS: This study used questionnaires to determine out whether the participants' mothers smoked when they were pregnant. For evaluating aging rate, we used the following several outcome measures: telomere length, frailty index, cognitive function, homeostatic dysregulation score, KDM-age, age-related hospitalization rate, premature death, and life expectancy. RESULT: After adjusting for covariates, we found that the offspring of the MSDP group had significantly shorter telomere length in adulthood by 0.8 % (ß = -0.008,95%CI:-0.009 to -0.006) compared with non-MSDP group. Compared to the non-MSDP group, participants in MSDP group showed higher levels of homeostatic dysregulation (ß = 0.015,95%CI: 0.007-0.024) and were frailer (ß = 0.008,95%CI:0.007-0.009). The KDM age increased by 0.100 due to MSDP (ß = 0.100,95 % CI:0.018-0.181), and the age acceleration of KDM algorithm also increases significantly (ß = 0.101, 95%CI:0.020-0.183). Additionally, we found that the risk of aging-related hospitalizations was significantly higher than the non-MSDP group by 10.4 %(HR = 1.104,95%CI:1.066-1.144). Moreover, MSDP group had a 12.2 % increased risk of all-cause premature mortality (HR = 1.122,95%CI:1.064-1.182) and a significant risk of lung cancer-specific premature mortality increased by 55.4 %(HR = 1.554,95%CI:1.346-1.793). In addition, participants in the MSDP group had significantly decreased cognitive function and shorter life expectancies than those in non-MSDP group. CONCLUSION: Our findings indicated a significant association between MSPD and accelerated aging, elevated hospitalization rates, increased premature mortality rates, and reduced life expectancies in offspring.

2.
Food Chem ; 458: 140528, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39047322

ABSTRACT

Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.

3.
Materials (Basel) ; 17(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998433

ABSTRACT

Pb-contaminated soil poses serious hazards to humans and ecosystems and is in urgent need of remediation. However, the extensive use of traditional curing materials such as ordinary Portland cement (OPC) has negatively impacted global ecology and the climate, so there is a need to explore low-carbon and efficient green cementitious materials for the immobilization of Pb-contaminated soils. A red mud/steel slag-based (RM/SS) geopolymer was designed and the potential use of solidifying/stabilizing heavy metal Pb pollution was studied. The Box-Behnken design (BBD) model was used to design the response surface, and the optimal preparation conditions of RM/SS geopolymer (RSGP) were predicted by software of Design-Expert 8.0.6.1. The microstructure and phase composition of RSGP were studied by X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy, and the immobilization mechanism of RSGP to Pb was revealed. The results showed that when the liquid-solid ratio is 0.76, the mass fraction of RM is 79.82% and the modulus of alkali activator is 1.21, the maximum unconfined compressive strength (UCS) of the solidified soil sample is 3.42 MPa and the immobilization efficiency of Pb is 71.95%. The main hydration products of RSGP are calcium aluminum silicate hydrate, calcium silicate hydrate and nekoite, which can fill the cracks in the soil, form dense structures and enhance the UCS of the solidified soil. Pb is mainly removed by lattice immobilization, that is, Pb participates in geopolymerization by replacing Na and Ca to form Si-O-Pb or Al-O-Pb. The remaining part of Pb is physically wrapped in geopolymer and forms Pb(OH)2 precipitate in a high-alkali environment.

4.
Small ; : e2402786, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966898

ABSTRACT

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

5.
Anal Chim Acta ; 1315: 342760, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879206

ABSTRACT

Mycotoxins are commonly found in food materials and severely threaten human health. Antibodies play a key role as a part of immunological techniques in detecting mycotoxins. Therefore, highly specific antibodies and detection techniques against mycotoxins need to be developed for advancements in medical research. In this study, we presented a novel strategy for quickly screening highly specific antigen-binding fragment (Fab) antibodies based on yeast surface display (YSD) and detecting small-molecule compounds based on a YSD biosensor. We constructed a yeast surface display Deoxynivalenol (DON)-Fab library with 105 cfu/mL with a galactose-inducible bidirectional promoter. By conducting efficient magnetic-activated cell sorting and fluorescence-activated cell sorting (MACS/FACS), four kinds of DON-selective yeasts were screened. As Fab@YSD C4# showed high sensitivity, we used it to build a one-pot Fab@YSD chemiluminescence biosensor with DON-BSA@Biotin and Streptavidin-alkaline phosphatase (SA-ALP). This method showed a low operational threshold (LOD = 0.166 pg/mL) and a high population range (linear range = 0.001-132.111 ng/mL) within 40 min, which facilitated the detection of DON with high specificity and better recovery in real samples (wheat, corn, flour, and cornmeal). Our results suggested that the Fab@YSD chemiluminescence biosensor is an inexpensive, reproducible, user-friendly, and sensitive method for detecting DON and may be used to quickly detect other small-molecule contaminants in food items.


Subject(s)
Biosensing Techniques , Trichothecenes , Trichothecenes/analysis , Biosensing Techniques/methods , Saccharomyces cerevisiae , Food Contamination/analysis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Limit of Detection , Triticum/chemistry , Triticum/microbiology , Zea mays/chemistry , Zea mays/microbiology , Flour/analysis
6.
J Formos Med Assoc ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851915

ABSTRACT

OBJECTIVE: Depression is an important public health issue among older adults, often associated with their sleep-related problems. We aimed to investigate the association between sleep-related problems and depressive symptoms among Chinese community-dwelling older adults. METHODS: This cross-sectional study utilized self-reported data from 2896 participants (aged ≥60 years) from Shanghai, China. Nocturnal sleep duration and difficulty initiating sleep (DIS) symptoms were obtained through face-to-face questionnaires. Nocturnal sleep duration was categorized as 'short' (<7 h), 'normal' (7-8 h), and 'long' (>8 h). Subsequently, the 3 groups were further divided into 6 groups based on the presence of DIS, and the combined sleep behaviors were termed 'sleep patterns'. Logistic regression was conducted to assess the association of sleep variables and sleep patterns with the risk of depressive symptoms. RESULTS: Compared to the reference group, 'short sleep duration' and DIS symptoms were associated with depressive symptoms (with odds ratios (OR) of 1.50 and 1.79, respectively, with 95% confidence intervals (CI) of 1.14-1.97 and 1.39-2.31). When compared to 'normal sleep duration without DIS', both 'short sleep duration with DIS' (OR = 2.60, 95% CI: 1.81-3.72) and 'normal sleep duration with DIS' (OR = 1.60, 95% CI: 1.03-2.49) were statistically associated with depressive symptoms in adjusted regression models. CONCLUSION: Short sleep duration and DIS symptoms were found to be associated with depressive symptoms. Combining DIS symptoms with sleep duration, DIS was identified as a risk factor for elevated depressive symptoms in individuals with short and normal sleep durations. In managing depressive symptoms, it is imperative to thoroughly evaluate insomnia and nighttime sleep, which can provide valuable insights for nursing and medical policy.

7.
Sci Rep ; 14(1): 14914, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942821

ABSTRACT

Prostate cancer (PCa) is the most common cancer among men in the United States and the leading cause of cancer-related death. The Solute Carrier Family 14 Member 1 (SLC14A1) is a member of urea transporters which are important for the regulation of urine concentration. However, the physiological significance of SLC14A1 in PCa still remains unclear. In the present study, via bioinformatics analysis and experiments, we found that expression of SLC14A1 is significantly decreased in PCa progression, which could be attributed to hypermethylation on SLC14A1 promoter region. Moreover, its low expression and hypermethylation on SLC14A1 promoter are closely related to the poor prognosis of PCa patients. On the other hand, overexpression of SLC14A1 inhibited cell proliferation and metastasis while its overexpression also suppressed CDK1/CCNB1 pathway and mTOR/MMP-9 signaling pathway. Additionally, SLC14A1 expression is enriched in prostate basal-type cells. In summary, our study indicates that its low expression level and promoter hypermethylation of SLC14A1 may represent novel indicators for PCa progression and prognosis, and SLC14A1 could inhibit the progression of PCa.


Subject(s)
CDC2 Protein Kinase , DNA Methylation , Disease Progression , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Prostatic Neoplasms , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Cell Proliferation/genetics , Down-Regulation , Prognosis , Cell Movement/genetics
8.
Surgery ; 176(2): 531-534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839433

ABSTRACT

We aimed to analyze the feasibility of endovascular treatment for brucellosis-related aorta-iliac artery pseudoaneurysm. We did a statistical analysis that among the 11 cases, the thoracic aorta was involved in 3 cases, the abdominal aorta was involved in 6 cases, and the iliac artery was involved in 2 cases. Five patients had a history of contact with cattle and sheep, 3 had a history of drinking raw milk, 10 patients had a fever before the operation, and 11 patients had positive serum agglutination test. Blood culture was positive in 2 patients. All patients were given anti-brucellosis treatment immediately after diagnosis. One died of aortic rupture 5 days after emergency endovascular gastrointestinal bleeding. Endovascular-covered stent implantation and active anti-brucellosis therapy were used to treat 10 patients. The follow-up period was 8 years without aortic complications or death for all patients. We think early diagnosis and a combination of anti-brucellosis drugs and endovascular therapy may be the first choice for treating the pseudoaneurysm caused by Brucella.


Subject(s)
Aneurysm, False , Brucellosis , Endovascular Procedures , Humans , Aneurysm, False/therapy , Aneurysm, False/microbiology , Aneurysm, False/etiology , Aneurysm, False/diagnosis , Brucellosis/complications , Brucellosis/diagnosis , Male , Endovascular Procedures/methods , Female , Middle Aged , Adult , Stents , Aged , Aneurysm, Infected/microbiology , Aneurysm, Infected/diagnosis , Aneurysm, Infected/therapy , Iliac Artery/surgery , Iliac Aneurysm/microbiology , Iliac Aneurysm/surgery , Iliac Aneurysm/therapy , Iliac Aneurysm/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Treatment Outcome , Retrospective Studies
9.
Sci Adv ; 10(26): eadk6833, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924405

ABSTRACT

Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.


Subject(s)
Ecosystem , Oceans and Seas , Phytoplankton , Zooplankton , Animals , Biomass , Water Movements
10.
Front Biosci (Landmark Ed) ; 29(5): 199, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38812322

ABSTRACT

BACKGROUND: Due to its non-invasive and widely applicable features, photodynamic therapy (PDT) has been a prominent treatment approach against cancer in recent years. However, its widespread application in clinical practice is limited by the dark toxicity of photosensitizers and insufficient penetration of light sources. This study assessed the anticancer effects of a novel photosensitizer 5-(4-amino-phenyl)-10,15,20-triphenylporphyrin with diethylene-triaminopentaacetic acid (ATPP-DTPA)-mediated PDT (hereinafter referred to as ATPP-PDT) under the irradiation of a 450-nm blue laser on colorectal cancer (CRC) in vivo and in vitro. METHODS: After 450-nm blue laser-mediated ATPP-PDT and the traditional photosensitizer 5-aminolevulinic acid (5-ALA)-PDT treatment, cell viability was detected through Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Reactive oxygen species (ROS) generation was quantified by flow cytometry and fluorescence microscopy. Western blotting and transcriptome RNA sequencing and functional experiments were used to evaluate cell apoptosis and its potential mechanism. Anti-tumor experiment in vivo was performed in nude mice with subcutaneous tumors. RESULTS: ATPP-DTPA had a marvelous absorption in the blue spectrum. Compared with 5-ALA, ATPP-DTPA could achieve significant killing effects at a lower dose. Owing to generating an excessive amount of ROS, 450-nm blue laser-mediated PDT based on ATPP-DTPA resulted in evident growth inhibition and apoptosis in CRC cells in vitro. After transcriptome RNA sequencing and functional experiments, p38 MAPK signaling pathway was confirmed to be involved in the regulation of apoptosis induced by 450-nm blue laser-mediated ATPP-PDT. Additionally, animal studies using xenograft model confirmed that ATPP-PDT had excellent anti-tumor effect and reasonable biosafety in vivo. CONCLUSIONS: PDT mediated by 450-nm blue laser combined with ATPP-DTPA may be a novel and effective method for the treatment of CRC.


Subject(s)
Apoptosis , Colorectal Neoplasms , Mice, Nude , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photochemotherapy/methods , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/radiotherapy , Apoptosis/drug effects , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Humans , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Lasers , Cell Survival/drug effects , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use
11.
Sci Rep ; 14(1): 7963, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575736

ABSTRACT

With a significant number of mechanical products approaching the retirement phase, the batch recycling of discarded mechanical parts necessitates a preliminary assessment of their surface condition. However, the presence of surface rust poses a challenge to defect identification. Therefore, this paper proposes a method for detecting heavily rusted surface defects based on an improved YOLOv8n network. In the Backbone, the C2f-DBB module of re-parameterized deep feature extraction was introduced, and the attention module was designed to improve the accuracy of information extraction. In the Neck part, a Bi-Afpn multiscale feature fusion strategy is designed to facilitate information exchange between features at different scales. Finally, Focal-CIoU is employed as the bounding box loss function to enhance the network's localization performance and accuracy for defects. Experimentally, it is proved that the improved network in this paper improves the Recall, Precision, and mAP0.5 by 1.2%, 2.1%, and 1.9%, respectively, on the original basis, which is better than other network models.

12.
ChemSusChem ; : e202400359, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687195

ABSTRACT

The escalating focus on environmental concerns and the swift advancement of eco-friendly biodegradable batteries raises a pressing demand for enhanced material design in the battery field. The traditional polypropylene (PP) that is monopolistically utilized in the commercial LIBs is hard to recycle. In this work, we prepare a novel water degradable separators via the cross-linking of polyvinyl alcohol (PVA) and dibasic acid (tartaric acid, TA). Through the integration of non-solvent liquid-phase separation, we successfully produced a thermally stable PVA-TA membrane with tunable thickness and a high level of porosity. These specially engineered PVA-TA separators were implemented in LiFePO4 (LFP)|separator|Li cells, resulting in superior multiplicative performance and achieving a capacity of 88 mAh g-1 under 5 C. Additionally, the straightforward small molecule cross-linking technique significantly reduced the crystalline region of the polymer, thereby enhancing ionic conductivity. Notably, after cycling, the PVA-TA separators can be easily dissolved in 95 °C hot water, enabling its reutilization for the production of new PVA-TA separators. Therefore, this work introduces a novel concept to design green and sustainable separators for recyclable lithium batteries.

13.
Medicine (Baltimore) ; 103(8): e37152, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394523

ABSTRACT

Plasma atherogenic index (AIP) reflects a novel intricate biochemical indicator of lipids' metabolism. The involvement of lipid metabolism for pathogenesis concerning nonalcoholic fatty liver disease (NAFLD) has been established. However, the precise association across AIP and hepatic steatosis and fibrosis remains unclear. This present investigation explored the potential correlation across AIP, hepatic steatosis and fibrosis. Data were acquired through National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. Hepatic steatosis was detected through the controlled attenuation parameter (CAP), while hepatic fibrosis was examined via liver stiffness measurement (LSM). The study employed multiple linear, Fitted smoothed curves and subgroup analyses were used for investigating relationships between the AIP, CAP, and LSM. The study recruited 6239 participants. In multivariate linear regression analysis, findings indicated a remarkable correlation between AIP and exacerbated NAFLD risk [odds ratio (95% confidence interval), 1.17 (1.12, 1.21)]. Analysis further revealed a positive link across AIP and hepatic steatosis, as indicated through the CAP [ß (95% CI), 4.07 (3.32, 4.82)]. Tests for non-linearity, revealed a non-linear correlation between AIP and CAP (inflection point = 0.22). Subgroup analyses assessed the consistency of the link across AIP and CAP, indicating that the association remained comparable across all subgroups. Following the adjustment for all relevant variables, the linear regression analysis revealed a lack of statistical significance across the AIP and hepatic fibrosis. [LSM, ß (95% CI), -0.39 (-1.06, 0.28), P = .2501]. Smooth-fitting curves examined the link across AIP and LSM and showed a U-shaped pattern, indicating their positive correlation with AIP less than 0.48. However, no significant correlation was observed with AIP more than 0.48. This study highlighted a substantial positive relationship across AIP and hepatic steatosis, as measured through CAP, and suggests that it may be used as an efficient and rapid measure for clinical prediction of hepatic steatosis.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Liver/pathology , Nutrition Surveys , Biopsy , Liver Cirrhosis/diagnosis
14.
Entropy (Basel) ; 26(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38392395

ABSTRACT

In this paper, a time-varying first-order mixture integer-valued threshold autoregressive process driven by explanatory variables is introduced. The basic probabilistic and statistical properties of this model are studied in depth. We proceed to derive estimators using the conditional least squares (CLS) and conditional maximum likelihood (CML) methods, while also establishing the asymptotic properties of the CLS estimator. Furthermore, we employed the CLS and CML score functions to infer the threshold parameter. Additionally, three test statistics to detect the existence of the piecewise structure and explanatory variables were utilized. To support our findings, we conducted simulation studies and applied our model to two applications concerning the daily stock trading volumes of VOW.

15.
Article in English | MEDLINE | ID: mdl-38299401

ABSTRACT

BACKGROUND: Metastatic renal cell carcinoma (RCC) poses a huge challenge once it has become resistant to targeted therapy. Vasculogenic mimicry (VM) is a novel blood supply system formed by tumor cells that can circumvent molecular targeted therapies. As one of the herbal remedies, curcumin has been demonstrated to play antineoplastic effects in many different types of human cancers; however, its function and mechanism of targeting VM in RCC remains unknown. OBJECTIVE: Here, in the work, we explored the role of curcumin and its molecular mechanism in the regulation of VM formation in RCC. METHODS: RNA-sequencing analysis, immunoblotting, and immunohistochemistry were used to detect E Twenty Six-1(ETS-1), vascular endothelial Cadherin (VE-Cadherin), and matrix metallopeptidase 9 (MMP9) expressions in RCC cells and tissues. RNA sequencing was used to screen the differential expressed genes. Plasmid transfections were used to transiently knock down or overexpress ETS-1. VM formation was determined by tube formation assay and animal experiments. CD31-PAS double staining was used to label the VM channels in patients and xenograft samples. RESULTS: Our results demonstrated that VM was positively correlated with RCC grades and stages using clinical patient samples. Curcumin inhibited VM formation in dose and time-dependent manner in vitro. Using RNA-sequencing analysis, we discovered ETS-1 as a potential transcriptional factor regulating VM formation. Knocking down or overexpression of ETS-1 decreased or increased the VM formation, respectively and regulated the expression of VE-Cadherin and MMP9. Curcumin could inhibit VM formation by suppressing ETS-1, VE-Cadherin, and MMP9 expression both in vitro and in vivo. CONCLUSION: Our finding might indicate that curcumin could inhibit VM by regulating ETS-1, VE-Cadherin, and MMP9 expression in RCC cell lines. Curcumin could be considered as a potential anti-cancer compound by inhibiting VM in RCC progression.

16.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424044

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor Proteins , Humans , Male , Pelvis , Promoter Regions, Genetic , Prostate , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Protein Kinase Inhibitors
17.
Cell Death Dis ; 15(1): 79, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38246916

ABSTRACT

Prostate cancer (PCa) is one of the most common malignancy in men. However, the molecular mechanism of its pathogenesis has not yet been elucidated. In this study, we demonstrated that CYLD, a novel deubiquitinating enzyme, impeded PCa development and progression via tumor suppression. First, we found that CYLD was downregulated in PCa tissues, and its expression was inversely correlated with pathological grade and clinical stage. Moreover, we discovered that CYLD inhibited tumor cell proliferation and enhanced the sensitivity to cell ferroptosis in PCa in vitro and in vivo, respectively. Mechanistically, we demonstrated that CYLD suppressed the ubiquitination of YAP protein, then promoted ACSL4 and TFRC mRNA transcription. Then, we demonstrated that CYLD could enhance the sensitivity of PCa xenografts to ferroptosis in vivo. Furthermore, we discovered for the first time that there was a positive correlation between CYLD expression and ACSL4 or TFRC expression in human PCa specimens. The results of this study suggested that CYLD acted as a tumor suppressor gene in PCa and promoted cell ferroptosis through Hippo/YAP signaling.


Subject(s)
Ferroptosis , Prostatic Neoplasms , Humans , Male , Cell Proliferation , Deubiquitinating Enzyme CYLD , Heterografts , Prostate , Prostatic Neoplasms/genetics
18.
Small ; : e2306763, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095451

ABSTRACT

All-solid-state batteries employing sulfide solid electrolyte and Li metal anode are promising because of their high safety and energy densities. However, the interface between Li metal and sulfides suffers from catastrophic instability which stems the practical use. Here, a dynamically stable sulfide electrolyte architecture to construct the hierarchy of interface stability is reported. By rationally designing the multilayer structures of sulfide electrolytes, the dynamic decomposing-alloying process from MS4 (M = Ge or Sn) unit in sulfide interlayer can significantly prohibit Li dendrite penetration is revealed. The abundance of highly electronic insulating decompositions, such as Li2 S, at the sulfide interlayer interface helps to well constrain the dynamic decomposition process and preserve the long-term polarization stability is also highlighted. By using Li6 PS5 Cl||Li10 SnP2 S12 ||Li6 PS5 Cl electrolyte architecture, Li metal anode shows an unprecedented critical current density over 3 mA cm-2 and achieves the steady over-potential for ≈900 hours. Based upon the merits, the Li||LiNi0.8 Co0.1 Mn0.1 O2 battery delivers a remarkable 75.3% retention even after 600 cycles at 1 C (1C-0.95 mA cm-2 ) under a low stack pressure of 15 MPa.

19.
Iran J Public Health ; 52(11): 2272-2285, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38106842

ABSTRACT

Background: Many epidemiological studies have explored the relationship between single-nucleotide polymorphism and hepatocellular carcinoma (HCC). However, the results remain controversial. We performed a large-scale meta-analysis to draw a more precise estimation of the aforementioned association. Methods: Studies on the association between microRNA (MIR) polymorphisms and HCC risk that had been published up to Sep 30, 2021 were identified by searching the PubMed, Cochrane Library, Google Scholar, Web of Science, and Chinese Biomedical Literature electronic databases and the Excerpta Medical Database. The association between MIR polymorphisms and HCC risk was assessed using odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Overall, 29 studies, with a total of 9,263 cases and 10,875 controls, were included in our meta-analysis. MicroRNA149 (MIR149) significantly decreased the risk of developing HCC on the overall population (homozygous model CC vs. TT: OR = 0.703, 95% CI = 0.549-0.899, P = 0.005), and microRNA 196 (MIR196) significantly decreased the risk of developing HCC on the overall population (recessive model TT vs. CT+CC: OR = 0.864, 95% CI = 0.751-0.993, P = 0.04) and on Caucasians (OR = 0.613, 95% CI = 0.414-0.907, P = 0.014). Conclusion: The MIR149 and MIR196 polymorphisms are the protect factors of developing HCC. The conduct of multi-center and multi-region studies with gene-gene, gene-environment should be considered.

20.
Asian J Androl ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37966336

ABSTRACT

ABSTRACT: Tumor-derived exosomes have been shown to play a key role in organ-specific metastasis, and the androgen receptor regulates prostate cancer (PCa) progression. It is unclear whether the androgen receptor regulates the recruitment of prostate cancer cells to the bone microenvironment, even bone metastases, through exosomes. Here, we found that exosomes isolated from PCa cells after knocking down androgen receptor (AR) or enzalutamide treatment can facilitate the migration of prostate cancer cells to osteoblasts. In addition, AR silencing or treatment with the AR antagonist enzalutamide may increase the expression of circular RNA-deoxyhypusine synthase (circ-DHPS) in PCa cells, which can be transported to osteoblasts by exosomes. Circ-DHPS acts as a competitive endogenous RNA (ceRNA) against endogenous miR-214-3p to promote C-C chemokine ligand 5 (CCL5) levels in osteoblasts. Increasing the level of CCL5 in osteoblasts could recruit more PCa cells into the bone microenvironment. Thus, blocking the circ-DHPS/miR-214-3p/CCL5 signal may decrease exosome-mediated migration of prostate cancer cells to osteoblasts.

SELECTION OF CITATIONS
SEARCH DETAIL