Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Ecol Evol ; 14(10): e70283, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39364038

ABSTRACT

Gut microbiota is related to host fitness, and influenced by geographical locations and habitats. Pomacea canaliculata is a malignant invasive alien snail that threatens agricultural production and ecosystem functions worldwide. Clarifying the general rules of the gut microbial community structure and function of the snails in different geographical locations and habitats is of great significance for understanding their invasion at different spatial scales. This study used high-throughput sequencing technology to compare and analyze the differences in community structure and function of gut microbiota in P. canaliculata from five geographical locations (Liuzhou, Yulin, Nanning, Wuzhou, and Hezhou) and three different habitats (pond, paddy field, and ditch) in Guangxi Province. The results showed that intestinal microbial alpha diversity of P. canaliculata was higher in Liuzhou, Yulin, lower in Nanning, Wuzhou, Hezhou, and higher in ponds compared with paddy fields and ditches. The dominant phyla of gut microbiota in snails were Firmicutes, Cyanobacteria, Proteobacteria, Fusobacteriota, Bacteroidota, and the dominant genus was Lactococcus. The community structure of gut microbiota in snails varied significantly across different geographical locations and habitats, and the phyla Firmicutes, Cyanobacteria had significantly higher relative abundance in snails collected from Nanning and Yulin, respectively. Moreover, the relative abundance of gut functional microbiota associated with human disease in P. canaliculata was significantly affected by geographical locations and habitats, and with the highest abundance in ponds. However, the relative abundance of functional microbiota related to metabolism, genetic information processing, organizational system, environmental information processing, and cellular processes were only significantly affected by geographical locations. Collectively, geographical locations and habitats had significantly different effects on the community structure and function of gut microbiota in P. canaliculata, and the greater differences were caused by geographical locations rather than by habitats.

2.
Food Chem ; 463(Pt 3): 141362, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39326310

ABSTRACT

Nowadays, the overconsumption of artificial sweeteners and their related adverse health impacts have proposed an urgent need to develop safe and healthy alternatives. Herein, we introduce ChemSweet, an AI-based platform for the rapid discovery of potential sweet molecules (http://chemsweet.ddai.tech) with the consideration of their physicochemical properties, sweetness profile, and health risks at the same time. Machine learning prediction models of four important physicochemical and four toxicity properties were established and integrated with the platform to evaluate the candidate molecules' biosafety and stability during the processing processes. Then, a new sweet taste prediction system was developed which ensures the sweet evaluation of six specific kinds of sweeteners. To facilitate the practical application of ChemSweet, the SuperNatural database was integrated for the rational screening of promising new sweeteners. We successfully identified 294 potential sweeteners that simultaneously meet the multiple anticipated criteria. We believe that ChemSweet will serve as a useful tool for identifying safe and healthy sweeteners while reducing the timeframe and high experimental costs.

3.
J Cancer ; 15(17): 5622-5635, 2024.
Article in English | MEDLINE | ID: mdl-39308683

ABSTRACT

Purpose: Breast cancer poses a huge threat to the lives and health of women worldwide. However, drug resistance makes the treatment of breast cancer challenging. This study aims to investigate the effect of miR-141-3p on paclitaxel resistance and its underlying mechanisms in breast cancer. Methods: Using bioinformatics analysis and qRT-PCR to explore the potential molecule miR-141-3p. Specific binding of miR-141-3p to Keap1 was determined by using a dual luciferase reporter assay. qRT-PCR and Western blot were utilized to observe the expression of miR-141-3p, Keap1, Nrf2, SLC7A11 and GPX4. GSH/GSSG content, MDA content and JC-1 assays were used to observe the ferroptosis levels of breast cancer cells. CCK-8 assay was used to observe the cell viability of breast cancer cells. Tumor subcutaneous transplantation experiment was used to understand the effect of miR-141-3p on paclitaxel resistance in breast cancer in vivo. Results: In the present study, miR-141-3p was found to be highly expressed and associated with poor prognosis in breast cancer. miR-141-3p inhibited Keap1 expression, promoted Nrf2 expression, and facilitated paclitaxel resistance in breast cancer cells. Inhibition of miR-141-3p promoted Keap1 expression, inhibited Nrf2 and its downstream SLC7A11-GSH-GPX4 signaling pathway, as well as promoted ferroptosis in cancer cells, and inhibited paclitaxel and RSL3 resistance. ML385 blocks the effect of miR-141-3p on paclitaxel resistance and ferroptosis resistance in breast cancer cells. In vivo, miR-141-3p mimics promoted paclitaxel resistance, whereas miR-141-3p inhibitors inhibited paclitaxel resistance in breast cancer cells. Conclusion: This work revealed that modulation of the Keap1-Nrf2 signaling pathway by miR-141-3p promoted paclitaxel resistance via regulating ferroptosis in breast cancer cells.

4.
Nat Chem ; 16(10): 1621-1629, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39251841

ABSTRACT

Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.

5.
Proc Natl Acad Sci U S A ; 121(39): e2404395121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39292743

ABSTRACT

Adult central nervous system (CNS) neurons down-regulate growth programs after injury, leading to persistent regeneration failure. Coordinated lipids metabolism is required to synthesize membrane components during axon regeneration. However, lipids also function as cell signaling molecules. Whether lipid signaling contributes to axon regeneration remains unclear. In this study, we showed that lipin1 orchestrates mechanistic target of rapamycin (mTOR) and STAT3 signaling pathways to determine axon regeneration. We established an mTOR-lipin1-phosphatidic acid/lysophosphatidic acid-mTOR loop that acts as a positive feedback inhibitory signaling, contributing to the persistent suppression of CNS axon regeneration following injury. In addition, lipin1 knockdown (KD) enhances corticospinal tract (CST) sprouting after unilateral pyramidotomy and promotes CST regeneration following complete spinal cord injury (SCI). Furthermore, lipin1 KD enhances sensory axon regeneration after SCI. Overall, our research reveals that lipin1 functions as a central regulator to coordinate mTOR and STAT3 signaling pathways in the CNS neurons and highlights the potential of lipin1 as a promising therapeutic target for promoting the regeneration of motor and sensory axons after SCI.


Subject(s)
Axons , Motor Neurons , Nerve Regeneration , Phosphatidate Phosphatase , STAT3 Transcription Factor , Signal Transduction , Spinal Cord Injuries , TOR Serine-Threonine Kinases , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics , Animals , Axons/metabolism , Axons/physiology , Nerve Regeneration/physiology , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , Motor Neurons/metabolism , Motor Neurons/physiology , Mice , Phosphatidic Acids/metabolism , Sensory Receptor Cells/metabolism , Female , Pyramidal Tracts/metabolism , Pyramidal Tracts/pathology
6.
Front Immunol ; 15: 1420216, 2024.
Article in English | MEDLINE | ID: mdl-39188723

ABSTRACT

Background: The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. Objective: This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. Methods: Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. Results: Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "Vaccine", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the Journal of Controlled Release, and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," "in situ nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. Conclusions: This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.


Subject(s)
Bibliometrics , Nanostructures , Vaccines , Humans , Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Nanotechnology , SARS-CoV-2/immunology
7.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39145931

ABSTRACT

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Subject(s)
DNA, Single-Stranded , Rad51 Recombinase , Recombinational DNA Repair , Replication Protein A , Saccharomyces cerevisiae Proteins , Rad51 Recombinase/metabolism , Replication Protein A/metabolism , Replication Protein A/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Protein Binding
8.
Chem Commun (Camb) ; 60(73): 10029-10032, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39189044

ABSTRACT

Fe2NiSe4@holey-graphene (FNS@HG) has been prepared by in situ growth and simultaneous perforation via a carbothermal reaction. The generation of nanoholes on the graphene sheets significantly reduced the diffusion distance of electrolyte ions, enhancing the rate capability of FNS@HG as an anode material for sodium-ion batteries.

9.
Ecotoxicol Environ Saf ; 284: 116891, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39153280

ABSTRACT

Shrimp are non-negligible victims of cadmium (Cd) contamination, and there is still a lack of strategies for mitigating Cd toxicity in shrimp. Bacillus cereus, with its significant heavy metal (HM) tolerance and chelating effects, is a representative beneficial bacterium to be investigated for mitigating the toxicity of Cd exposure. This study revealed the effects and potential mechanisms of B. cereus in mitigating chronic Cd toxicity in shrimp by analyzing growth performance, hepatopancreatic Cd accumulation, pathology, as well as comprehensive hepatopancreatic transcriptomics and metabolomics in Litopenaeus vannamei. The results showed that shrimp's growth inhibition, hepatopancreatic Cd accumulation and physiological structure damage in B. cereus+chronic Cd group were effectively alleviated compared with the chronic Cd treatment group. The pathways related to amino acid metabolism, glycolipid metabolism, immune response, and antioxidant stress were significantly activated in the B. cereus+chronic Cd group, including glycolysis, pentose phosphate pathway, oxidative phosphorylation, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids pathways. The key differentially expressed genes (e.g., macrophage migration inhibitory factor, glycine cleavage system H protein, glycine dehydrogenase, phosphoglucomutase-2, asparaginase, ATP synthase subunit, cytochrome c, and 4-hydroxyphenylpyruvate dioxygenase) and metabolites (e.g., L-leucine, D-ribose, gluconic acid, 6-Phosphogluconic acid, sedoheptulose 7-phosphate, 1-Kestose, glyceric acid, arachidic acid, prostaglandins, 12-Keto-tetrahydro-leukotriene B4, and gamma-glutamylcysteine) associated with the above pathways were significantly altered. This study demonstrated that B. cereus is an effective mitigator for the treatment of chronic Cd poisoning in shrimp. B. cereus may play a role in alleviating the toxicity of Cd by enhancing the antioxidant performance, immune defense ability, metabolic stability, and energy demand regulation of shrimp. The study provides reference materials for the study of B. cereus in alleviating Cd toxicity of shrimp and broadens the application of probiotics in treating HM toxicity.


Subject(s)
Bacillus cereus , Cadmium , Penaeidae , Transcriptome , Water Pollutants, Chemical , Animals , Bacillus cereus/drug effects , Cadmium/toxicity , Penaeidae/drug effects , Penaeidae/microbiology , Water Pollutants, Chemical/toxicity , Transcriptome/drug effects , Metabolomics , Hepatopancreas/drug effects , Hepatopancreas/pathology , Hepatopancreas/metabolism
10.
Curr Drug Metab ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005121

ABSTRACT

BACKGROUND: The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS: This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS: Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION: In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.

11.
Chemosphere ; 361: 142578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857631

ABSTRACT

Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 µg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 µg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 µg/L Cd2+, and Maribacter at 300 µg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 µg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.


Subject(s)
Cadmium , Metabolome , Penaeidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Penaeidae/drug effects , Penaeidae/growth & development , Penaeidae/microbiology , Penaeidae/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Metabolome/drug effects , Microbiota/drug effects , Aquaculture , Gastrointestinal Microbiome/drug effects , Gills/metabolism , Gills/drug effects
12.
ACS Appl Mater Interfaces ; 16(27): 35114-35122, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941158

ABSTRACT

The cathode material Na4Fe3(PO4)2P2O7 (NFPP) has shown great potential for sodium-ion batteries (SIBs) due to its cost-effectiveness, prolonged cycle life, and high theoretical capacity. However, the practical large-scale production of NFPP is hindered by its poor intrinsic electron conductivity and the presence of a NaFePO4 impurity. In this study, we propose a mutually reinforcing approach involving Ti doping, mechanical nano treatment, and in situ carbon coating to produce Ti-NFPP via the solid-state methods of synthesis. Ti doping strengthens the covalent Fe-O interaction, hence accelerating the electron transfer and the redox reactions Fe2+/Fe3+. In situ carbon coating improves electrical conductivity and allows for accommodating the volumetric variation. Nanosized treatment promotes the uniform progression of solid-state reactions. The synthesized Na4Fe2.98Ti0.01(PO4)2P2O7 material (Ti-NFPP) exhibits promising electrochemical properties with an initial discharge specific capacity of 112.5 mA h g-1 at 0.1 C. A volumetric change of only 2.98% was observed during the de/sodiation process, indicating an enhanced reversibility of the crystal lattice. Moreover, it demonstrates exceptional cycling stability with a capacity retention rate of 97.2 mA h g-1 at 10 C over 5000 cycles. These findings offer a promising pathway for the large-scale production of Ti-NFPP in SIBs.

13.
Front Public Health ; 12: 1379767, 2024.
Article in English | MEDLINE | ID: mdl-38841684

ABSTRACT

Introduction: The prevalence of dental caries (DC) among students in developing countries has increased at an alarming rate, and nutritional status has been shown to be associated with DC in children and adolescents with inconsistent conclusions. We aimed to understand the trends of DC prevalence in students aged 7, 9, 12, and 14 years and to explore the relationship between DC prevalence and nutritional status. Methods: We recruited 16,199 students aged 7, 9, 12, and 14 years in China by multi-stage, stratified, random sampling methods from 2010 to 2019. Permanent caries were measured using the Decay, Loss, and Filling (DMF) index and prevalence rate. Deciduous caries were measured using the decay, loss, and filling (dmf) index and prevalence rate. Nutritional status was assessed using body mass index (BMI) and hemoglobin levels. Logistic regression analysis was used to assess the association between nutritional status and the DC prevalence in children and adolescents, incorporating information concerning family-related factors. Results: The results indicated that DC prevalence increased from 39.75% in 2010 to 53.21% in 2019 in Henan province, with deciduous teeth and permanent teeth being 45.96 and 27.18%, respectively, in 2019. The total caries rate decreased with age (p < 0.05), and the caries rate of girls was higher than that of boys in 2019 (55.75% vs. 50.67%) (p < 0.001). The prevalence of dental caries among primary and secondary school students in areas with medium economic aggregate was the highest, followed by cities with the best economic development level, and cities with low economic levels have a lower prevalence of dental caries. The dental caries prevalence was negatively correlated with body mass index. In the fully adjusted model, underweight children had a higher caries prevalence (OR = 1.10, 95%CI: 0.86-1.41). Children with anemia had a higher prevalence of dental caries (OR = 1.18, 95%CI: 0.98-1.42). Conclusion: The DC prevalence of students in Henan Province was high, with a tendency to increase. Females, young individuals, and those with a higher economic level showed a positive correlation with the prevalence of caries. In the process of economic development, particular attention should be paid to early childhood caries prevention. Nutritional status should be taken seriously among children and adolescents, and the oral health system should be improved to keep pace with economic development.


Subject(s)
Dental Caries , Nutritional Status , Students , Humans , Dental Caries/epidemiology , China/epidemiology , Female , Male , Child , Adolescent , Prevalence , Retrospective Studies , Students/statistics & numerical data , Body Mass Index , Surveys and Questionnaires , DMF Index , East Asian People
14.
J Colloid Interface Sci ; 672: 43-52, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824687

ABSTRACT

The natural abundance of sodium has fostered the development of sodium-ion batteries for large-scale energy storage. However, the low capacity of the anodes hinders their future application. Herein, carbon-encapsulated MnSe-FeSe nanorods (MnSe-FeSe@C) have been fabricated by the in-situ transformation from polydopamine-coated MnO(OH)-Fe2O3. The heterostructure constructed by MnSe and FeSe nanocrystals induces the formation of built-in electric fields, accelerating electron transfer and ion diffusion, thereby improving reaction kinetics. In addition, carbon enclosure can buffer the volumetric stress and enhance the electrical conductivity. These aspects cooperatively endow the anode with superior cycling stability and distinguished rate performance. Specifically, the discharge capacity of MnSe-FeSe@C reaches 414.3 mA h g-1 at 0.1 A g-1 and 388.8 mA h g-1 even at a high current density of 5.0 A g-1. In addition, it still retains a high reversible capacity of 449.2 mA h g-1 after 700 long cycles at 1.0 A g-1. Further, the ab initio calculation has been employed to authenticate the existence of the built-in electric field by Bader charge, indicating that 0.24 electrons in MnSe were transferred to FeSe. The in-situ XRD has been used to evaluate the phase transition during the charging/discharging process, revealing the sodium ion storage mechanism. The construction of heterostructure material paves a new way to design performance-enhanced anode materials for sodium-ion batteries.

15.
RSC Adv ; 14(24): 16624-16628, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784423

ABSTRACT

Herein, we report a one-pot approach to diarylamines through the reductive homocoupling of nitroaromatics, employing triethylsilane as the reducing agent and Pd/NHC as the catalyst. This method enables nitroaromatics to serve both as electrophilic reagents and as precursors of nucleophilic reagents, allowing for the direct preparation of diarylamines without the need to isolate aromatic primary amines.

16.
Transl Psychiatry ; 14(1): 212, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802408

ABSTRACT

Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.


Subject(s)
Dementia , Frailty , Genetic Predisposition to Disease , Humans , Female , Male , Dementia/genetics , Dementia/epidemiology , Frailty/genetics , Frailty/epidemiology , Middle Aged , Prospective Studies , Incidence , Aged , Risk Factors , United Kingdom/epidemiology , Proportional Hazards Models
17.
Cell Signal ; 119: 111182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640983

ABSTRACT

Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Cell Movement , Epithelial-Mesenchymal Transition , Exosomes , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Exosomes/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Neoplasm Metastasis , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics
18.
Dev Cell ; 59(11): 1396-1409.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38569547

ABSTRACT

The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.


Subject(s)
Calcium , Endoplasmic Reticulum , Mechanotransduction, Cellular , Optogenetics , TRPP Cation Channels , Animals , Endoplasmic Reticulum/metabolism , Chlorocebus aethiops , COS Cells , Optogenetics/methods , Calcium/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Chaperone BiP/metabolism
19.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627785

ABSTRACT

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Subject(s)
Mammary Neoplasms, Animal , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
20.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38574838

ABSTRACT

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Subject(s)
Benzamides , Ferroptosis , Microglia , NF-E2-Related Factor 2 , Pyrroles , Reperfusion Injury , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Disease Models, Animal , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Line , Active Transport, Cell Nucleus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL