Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Front Immunol ; 15: 1460915, 2024.
Article in English | MEDLINE | ID: mdl-39351232

ABSTRACT

Prostate adenocarcinoma (PRAD) is a prevalent global malignancy which depends more on lipid metabolism for tumor progression compared to other cancer types. Although Stearoyl-coenzyme A desaturase (SCD) is documented to regulate lipid metabolism in multiple cancers, landscape analysis of its implications in PRAD are still missing at present. Here, we conducted an analysis of diverse cancer datasets revealing elevated SCD expression in the PRAD cohort at both mRNA and protein levels. Interestingly, the elevated expression was associated with SCD promoter hypermethylation and genetic alterations, notably the L134V mutation. Integration of comprehensive tumor immunological and genomic data revealed a robust positive correlation between SCD expression levels and the abundance of CD8+ T cells and macrophages. Further analyses identified significant associations between SCD expression and various immune markers in tumor microenvironment. Single-cell transcriptomic profiling unveiled differential SCD expression patterns across distinct cell types within the prostate tumor microenvironment. The Gene Ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that SCD enriched pathways were primarily related to lipid biosynthesis, cholesterol biosynthesis, endoplasmic reticulum membrane functions, and various metabolic pathways. Gene Set Enrichment Analysis highlighted the involvement of elevated SCD expression in crucial cellular processes, including the cell cycle and biosynthesis of cofactors pathways. In functional studies, SCD overexpression promoted the proliferation, metastasis and invasion of prostate cancer cells, whereas downregulation inhibits these processes. This study provides comprehensive insights into the multifaceted roles of SCD in PRAD pathogenesis, underscoring its potential as both a therapeutic target and prognostic biomarker.


Subject(s)
Adenocarcinoma , Disease Progression , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Stearoyl-CoA Desaturase , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Humans , Male , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Gene Expression Profiling , DNA Methylation
2.
Org Biomol Chem ; 22(39): 7971-7975, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39269007

ABSTRACT

The cyclisation mechanism of the fungal fusicoccane (FC)-type diterpene synthase (DTS) TadA was investigated by extensive isotopic labelling experiments, and the pH-dependency of the product selectivity of this enzyme was explored. These studies provide new insights into the cyclisation mechanisms of FC-type DTSs.


Subject(s)
Alkyl and Aryl Transferases , Diterpenes , Diterpenes/chemistry , Diterpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Cyclization , Hydrogen-Ion Concentration , Molecular Structure
3.
Microbiol Spectr ; 12(10): e0076924, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39269208

ABSTRACT

To explore the influence of storage temperature and time on the stability of different concentrations of hepatitis C virus nucleic acid (HCV RNA) samples and to provide data reference for laboratory quality control. Serum samples of 10 patients with HCV RNA detection quantitation of 106-108 IU/mL were collected. The samples of each patient were diluted into three concentrations: high, medium, and low. Then the samples of each concentration were divided into 21, which were divided into three groups according to the storage conditions of -20°C, 4°C, and 25°C, with seven samples in each group. The samples were selected from each group for quantitative detection of HCV RNA on day 0, day 1, day 3, day 5, day 7, day 14, and day 30. The results of each concentration and storage temperature sample remained stable within 5 days. Based on the mixed-effect linear model, the main effects of temperature, time, and concentration were statistically significant (P < 0.01). There was an interaction effect between concentration and time (P = 0.0448), and there was also an interaction effect between temperature and time (P < 0.01). There was no interaction effect between concentration and temperature (P = 0.11) or between concentration, temperature, and time (P = 0.90). The results of serum samples with different concentrations of the HCV RNA remained stable within 5 days. The lower the initial concentration of HCV RNA serum sample, the worse the stability; the higher the storage temperature, the worse the stability. If conditions permit, the laboratory should store such samples at -20°C. IMPORTANCE: Previously, there were few reports about the influence of different concentrations of sample nucleic acid on the stability of samples at various temperatures and times in various literatures. Therefore, it is necessary to analyze the influence of concentration factors on the stability of samples and test results at different storage times and temperatures. This study took the concentration of hepatitis C virus nucleic acid as the research object to further understand the stability of hepatitis C virus nucleic acid test samples under various storage conditions, to provide data reference for the treatment of hepatitis C virus nucleic acid and RNA test samples before clinical laboratory test, and provide guidance and help for the improvement of laboratory quality control.


Subject(s)
Hepacivirus , Hepatitis C , RNA, Viral , Specimen Handling , Temperature , Humans , Hepacivirus/genetics , Hepacivirus/isolation & purification , RNA, Viral/blood , Hepatitis C/virology , Hepatitis C/blood , Time Factors , Specimen Handling/methods , RNA Stability , Female , Male
4.
Neuropharmacology ; 261: 110159, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303856

ABSTRACT

Neuroinflammation plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Anisomycin is a pyrrolidine antibiotic isolated from Streptomyces griseolus, which is an efficient anti-inflammatory agent that functions both in vivo and in vitro. However, it is not clear whether anisomycin can exert neuroprotective effect in AD. In the present study, anisomycin was intragastrically administrated to female triple-transgenic AD (3xTg-AD) model mice, then Morris water maze test was used to observe the long-term spatial memory of mice, the in vivo hippocampal field potential recording was performed to evaluate the synaptic plasticity, the Western blot and immunofluorescence were employed to detect pathological changes, and the bioinformatics analysis was used to predict the potential target of anisomycin exerting effects in AD. The results showed that anisomycin ameliorated the long-term spatial memory deficits, improved LTP depression and increased the expression of PSD-95, reduced the Aß and tau pathologies, and alleviated the activation of microglia and astrocytes in the brains of 3xTg-AD mice. In addition, the results from bioinformatics analysis showed that the potential target of anisomycin focused on inflammatory pathway. These results indicated that anisomycin exerts neuroprotective effects in 3xTg-AD mice by alleviating neuroinflammation, but the potential mechanism of anisomycin exerting neuroprotective effects needs to be further investigated.

5.
Chem Soc Rev ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254255

ABSTRACT

The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 µm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.

6.
Water Res ; 265: 122244, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39146657

ABSTRACT

Bioelectricity generation by electrochemically active bacteria has become particularly appealing due to its vast potential in energy production, pollution treatment, and biosynthesis. However, developing high-performance anodes for bioelectricity generation remains a significant challenge. In this study, a highly efficient three-dimensional nitrogen-doped macroporous graphene aerogel anode with a nitrogen content of approximately 4.38 ± 0.50 at% was fabricated using hydrothermal method. The anode was successfully implemented in bioelectrochemical systems inoculated with Shewanella oneidensis MR-1, resulting in a significantly higher anodic current density (1.0 A/m2) compared to the control one. This enhancement was attributed to the greater biocapacity and improved extracellular electron transfer efficiency of the anode. Additionally, the N-doped aerogel anode demonstrated excellent performance in mixed-culture inoculated bioelectrochemical systems, achieving a high power density of 4.2 ± 0.2 W/m², one of the highest reported for three-dimensional carbon-based bioelectrochemical systems to date. Such improvements are likely due to the good biocompatibility of the N-doped aerogel anode, increased extracellular electron transfer efficiency at the bacteria/anode interface, and selectively enrichment of electroactive Geobacter soli within the NGA anode. Furthermore, based on gene-level Picrust2 prediction results, N-doping significantly upregulated the conductive pili-related genes of Geobacter in the three-dimensional anode, increasing the physical connection channels of bacteria, and thus strengthening the extracellular electron transfer process in Geobacter.


Subject(s)
Bioelectric Energy Sources , Electrodes , Graphite , Nitrogen , Shewanella , Nitrogen/chemistry , Graphite/chemistry , Shewanella/metabolism , Electricity
7.
Chemotherapy ; : 1-14, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128459

ABSTRACT

INTRODUCTION: Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study was to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. METHODS: We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time polymerase chain reaction was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. RESULTS: We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using small interfering RNA or AKT inactivation through the phosphatidylinositol 3-kinase inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. CONCLUSION: Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.

8.
Small ; : e2404432, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973075

ABSTRACT

Long-term epidermal recording of bioelectricity is of paramount importance for personal health monitoring. It requires stretchable and dry film electrodes that can be seamlessly integrated with skin. The simultaneous achievement of high conductivity and skin-like ductility of conducting materials is a prerequisite for reliable signal transduction at the dynamic interface, which is also the bottleneck of epidermal electrophysiology. Here, carbon nanotubes (CNTs) are introduced as "conjugation linkers" into a topologically plasticized conducting polymer (PEDOT:PSS). A thin-film electrode with high conductivity (≈3250 S cm-1) and high stretchability (crack-onset strain>100%) is obtained. In particular, the conjugation linker enables the high volumetric capacitance and the low film resistance, both of which synergically reduce the interfacial impedance. The capabilities of this electrode is further demonstrated in the precise recording of various electrophysiological signals.

10.
Inflamm Res ; 73(8): 1267-1282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844677

ABSTRACT

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.


Subject(s)
Acute Kidney Injury , Chemotaxis , Isoflavones , Macrophage Migration-Inhibitory Factors , Macrophages , Reperfusion Injury , Animals , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chemotaxis/drug effects , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Isoflavones/pharmacology , Isoflavones/therapeutic use , Kidney/drug effects , Kidney/pathology , Lipopolysaccharides , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , RAW 264.7 Cells , Reperfusion Injury/drug therapy
11.
Environ Sci Technol ; 58(21): 9436-9445, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691809

ABSTRACT

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.


Subject(s)
Hydrogen Peroxide , Titanium , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Titanium/chemistry , Iron/chemistry , Hydroxyl Radical/chemistry , Catalysis , Electrodes
12.
BMC Urol ; 24(1): 111, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778291

ABSTRACT

BACKGROUND: Patients with spinal cord injury have a relatively high risk for bladder cancer and often complicated with bladder cancer in advanced stages, and the degree of aggressiveness of malignancy is high. Most of the literature is based on disease clinical features while, our study reviews the clinical characteristics and molecular mechanisms of spinal cord injury patients with bladder cancer, so that it might help clinicians better recognize and manage these patients. METHOD: We searched PubMed, Web of Science and Embase, using retrieval type like ("Neurogenic Lower Urinary Tract Dysfunction" OR "Spinal cord injury" OR "Spinal Cord Trauma") AND ("bladder cancer" OR "bladder neoplasm" OR "bladder carcinoma" OR "Urinary Bladder Neoplasms" OR "Bladder Tumor"). In Web of Science, the retrieval type was searched as "Topic", and in PubMed and Embase, as "All Field". The methodological quality of eligible studies and their risk of bias were assessed using the Newcastle-Ottawa scale. This article is registered in PROSPERO with the CBD number: CRD42024508514. RESULT: In WOS, we searched 219 related papers, in PubMed, 122 and in Embase, 363. Thus, a total of 254 articles were included after passing the screening, within a time range between 1960 and 2023. A comprehensive analysis of the data showed that the mortality and incidence rates of bladder cancer in spinal cord injury patients were higher than that of the general population, and the most frequent pathological type was squamous cell carcinoma. In parallel to long-term urinary tract infection and indwelling catheterization, the role of molecules such as NO, MiR 1949 and Rb 1. was found to be crucial pathogenetically. CONCLUSION: This review highlights the risk of bladder cancer in SCI patients, comprehensively addressing the clinical characteristics and related molecular mechanisms. However, given that there are few studies on the molecular mechanisms of bladder cancer in spinal cord injury, further research is needed to expand the understanding of the disease.


Subject(s)
Spinal Cord Injuries , Urinary Bladder Neoplasms , Spinal Cord Injuries/complications , Humans , Urinary Bladder Neoplasms/complications
13.
ACS Appl Mater Interfaces ; 16(22): 29217-29225, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776472

ABSTRACT

Electrohydrodynamic (EHD) jet printing is a widely employed technology to create high-resolution patterns and thus has enormous potential for circuit production. However, achieving both high conductivity and high resolution in printed polymer electrodes is a challenging task. Here, by modulating the aggregation state of the conducting polymer in the solution and solid phases, a stable and continuous jetting of PEDOT:PSS is realized, and high-conductivity electrode arrays are prepared. The line width reaches less than 5 µm with a record-high conductivity of 1250 S/cm. Organic field-effect transistors (OFETs) are further developed by combining printed source/drain electrodes with ultrathin organic semiconductor crystals. These OFETs show great light sensitivity, with a specific detectivity (D*) value of 2.86 × 1014 Jones. In addition, a proof-of-concept fully transparent phototransistor is demonstrated, which opens up new pathways to multidimensional optical imaging.

14.
Water Res ; 255: 121503, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38537488

ABSTRACT

With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.

15.
Nature ; 627(8003): 313-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480964

ABSTRACT

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Subject(s)
Equipment Design , Skin , Transistors, Electronic , Wearable Electronic Devices , Humans , Silicon , Nanotubes, Carbon , Touch
16.
Cell Death Dis ; 15(3): 236, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553452

ABSTRACT

Metastasis is a bottleneck in cancer treatment. Studies have shown the pivotal roles of long noncoding RNAs (lncRNAs) in regulating cancer metastasis; however, our understanding of lncRNAs in gastric cancer (GC) remains limited. RNA-seq was performed on metastasis-inclined GC tissues to uncover metastasis-associated lncRNAs, revealing upregulated small nucleolar RNA host gene 26 (SNHG26) expression, which predicted poor GC patient prognosis. Functional experiments revealed that SNHG26 promoted cellular epithelial-mesenchymal transition and proliferation in vitro and in vivo. Mechanistically, SNHG26 was found to interact with nucleolin (NCL), thereby modulating c-Myc expression by increasing its translation, and in turn promoting energy metabolism via hexokinase 2 (HK2), which facilitates GC malignancy. The increase in energy metabolism supplies sufficient energy to promote c-Myc translation and expression, forming a positive feedback loop. In addition, metabolic and translation inhibitors can block this loop, thus inhibiting cell proliferation and mobility, indicating potential therapeutic prospects in GC.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Energy Metabolism , Feedback , Gene Expression Regulation, Neoplastic , Protein Biosynthesis , RNA, Long Noncoding/metabolism , Stomach Neoplasms/pathology
17.
Food Sci Nutr ; 12(3): 2104-2114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455174

ABSTRACT

This study (ISRCTN17174559) aimed to explore the efficacy and safety of a kind of herbal porridge (Hou Gu Mi Xi) on the clinical symptoms of functional dyspepsia (FD). This was a single-center, single-dose, prospective, double-blind, randomized controlled trial involving 64 participants with FD (35 cases and 29 controls) for 2 months of intervention and 1 month of follow-up. The 7-point Global Overall Symptom Scale (GOSS), 36-Item Short Form Survey (SF-36), and other indicators were assessed at baseline (day 0), at days 15, 30, and 60 of treatment, and at follow-up 1 month after the end of the intervention. Many participants with FD achieved remission of their epigastric symptoms at follow-up on the 90th day after treatment with herbal porridge compared to the placebo group (45.71% vs. 20.69%, p = .036). Furthermore, herbal porridge appeared to be effective in improving the quality of life of participants with FD, which was reflected in the rising SF-36 scores for physical role, bodily pain, emotional role, and mental health. Although adverse events were reported, there was no overall difference in the number of adverse events between the two groups (p = .578). Herbal porridge is another effective and safe method for improving the symptoms and quality of life in patients with FD.

18.
Front Immunol ; 15: 1285813, 2024.
Article in English | MEDLINE | ID: mdl-38426091

ABSTRACT

Background: Vulnerable plaque was associated with recurrent cardiovascular events. This study was designed to explore predictive biomarkers of vulnerable plaque in patients with coronary artery disease. Methods: To reveal the phenotype-associated cell type in the development of vulnerable plaque and to identify hub gene for pathological process, we combined single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic plaques using Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation (Scissor) and Weighted gene co-expression network analysis (WGCNA). We also validated our results in an independent cohort of patients by using intravascular ultrasound during coronary angiography. Results: Macrophages were found to be strongly correlated with plaque vulnerability while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate cell state (ICS) clusters were negatively associated with unstable plaque. Weighted gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1) in the turquoise module was highly correlated with both the gene module and the clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate regression analysis revealed that serum SPP1 was an independent determinant of the presence of vulnerable plaque. Receiver operating characteristic curve analysis indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P < 0.001) for adding serum SPP1 in predicting of vulnerable plaques. Conclusion: Elevated serum SPP1 levels confer an increased risk for plaque vulnerability in patients with coronary artery disease.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Biomarkers , Coronary Angiography , Osteopontin/genetics , Plaque, Atherosclerotic/pathology
19.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180110

ABSTRACT

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Subject(s)
Aphids , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Aphids/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Mutation , Voltage-Gated Sodium Channels/genetics , Gene Expression , Insecticides/pharmacology , Insecticide Resistance/genetics
20.
Int J Biol Macromol ; 257(Pt 2): 128728, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092101

ABSTRACT

Trichinellosis is a zoonotic parasitic disease that poses threats to human health, the meat industry, food safety, and huge financial losses. The critical stage of Trichinella spiralis (T. spiralis) infection is the invasion of intestinal larvae into the host's intestinal epithelial cells (IECs). T. spiralis Cathepsin B (TsCB) specifically interacts with IECs to facilitate the invasion of larvae. This study aims to look at how TsCB affects mouse IECs. TsCB was successfully cloned, expressed, and characterized, demonstrating its natural cysteine protease hydrolysis activity. A total of 140 proteins that interact with rTsCB were identified by GST pull-down combined with LC-MS/MS, including type I collagen, an essential component of the host's intestinal epithelial barrier system and intimately related to intestinal epithelial damage. TsCB transcription and expression levels rise, whereas type I collagen in the host's intestinal mucosa declines when the T. spiralis larvae invaded. Besides, it was discovered that TsCB bound to and degraded type I collagen of the host's intestine. This research can serve as a foundation for clarifying how T. spiralis invades the host's intestinal barrier and might provide information on potential targets for the creation of novel treatments to treat parasite illnesses.


Subject(s)
Trichinella spiralis , Trichinellosis , Animals , Mice , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Cathepsin B/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Intestines , Trichinellosis/metabolism , Trichinellosis/parasitology , Larva/metabolism , Mice, Inbred BALB C , Helminth Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL