Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
BMC Infect Dis ; 23(1): 515, 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37550614

BACKGROUND: Tuberculosis (TB) is an ancient infection and a major public health problem in many low- and middle-income countries (LMICs). Active case finding (ACF) programs have been established to effectively reduce TB in endemic global communities. However, there is little information about the evidence-based benefits of active case finding at both the individual and community levels. Accurately identifying the facilitators and barriers to TB-ACF provides information that can be used in planning and design as the world aims to end the global TB epidemic by 2035. Therefore, this study aimed to identify the facilitators and barriers to tuberculosis ACF in LMICs. METHODS: A systematic search was performed using recognized databases such as PubMed, Google Scholar, SCOPUS, HINARI, and other reference databases. Relevant studies that assessed or reported the ACF of TB conducted in LMICs were included in this study. The Joanna Briggs Institute's (JBI) Critical Appraisal Tool was used to assess the quality of the selected studies. The Statement of Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ) was used to strengthen the protocol for this systematic review. The Confidence of Evidence Review Quality (CERQual) approach was also used to assess the reliability of the review findings. RESULTS: From 228 search results, a total of 23 studies were included in the final review. Tuberculosis ACF results were generated under two main themes: barriers and facilitators in LMICs, and two sub-themes of the barriers (healthcare-related and non-healthcare-related barriers). Finally, barriers to active TB case finding were found to be related to (1) the healthcare workers' experience, knowledge, and skills in detecting TB-ACF, (2) distance and time; (3) availability and workload of ACF healthcare workers; (4) barriers related to a lack of resources such as diagnostic equipment, reagents, and consumables at TB-ACF; (5) the stigma associated with TB-ACF detection; (6) the lack of training of existing and new healthcare professionals to detect TB-ACF; (7) communication strategies and language limitations associated with TB ACF; and (8) poor or no community awareness of tuberculosis. Stigma was the most patient-related obstacle to detecting active TB cases in LMICs. CONCLUSION: This review found that surveillance, monitoring, health worker training, integration into health systems, and long-term funding of health facilities were key to the sustainability of ACF in LMICs. Understanding the elimination of the identified barriers is critical to ensuring a maximum tuberculosis control strategy through ACF.


Developing Countries , Tuberculosis , Humans , Reproducibility of Results , Tuberculosis/epidemiology , Health Personnel , Qualitative Research
3.
Theor Appl Genet ; 136(5): 114, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37074596

KEY MESSAGE: We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.


Fabaceae , Vicia faba , Vicia faba/genetics , Genome-Wide Association Study , Plant Breeding , Phenotype , Fabaceae/genetics
4.
Nature ; 615(7953): 652-659, 2023 03.
Article En | MEDLINE | ID: mdl-36890232

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Crops, Agricultural , Diploidy , Genetic Variation , Genome, Plant , Genomics , Plant Breeding , Plant Proteins , Vicia faba , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , DNA Copy Number Variations/genetics , DNA, Satellite/genetics , Gene Amplification/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Geography , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Recombination, Genetic , Retroelements/genetics , Seeds/anatomy & histology , Seeds/genetics , Vicia faba/anatomy & histology , Vicia faba/genetics , Vicia faba/metabolism
5.
J Agric Food Chem ; 70(30): 9295-9304, 2022 Aug 03.
Article En | MEDLINE | ID: mdl-35862501

A major objective in faba bean breeding is to improve its protein quality by selecting cultivars with enhanced desirable physicochemical properties. However, the protein composition of the mature seed is determined by a series of biological processes occurring during seed growth. Thus, any attempt to explain the final seed composition must consider the dynamics of the seed proteome during seed development. Here, we investigated the proteomic profile of developing faba bean seeds across 12 growth stages from 20 days after pollination (DAP) to full maturity. We analyzed trypsin-digested total protein extracts from the seeds at different growth stages by liquid chromatography-tandem mass spectrometry (LC-MS/MS), identifying 1217 proteins. The functional clusters of these proteins showed that, in early growth stages, proteins related to cell growth, division, and metabolism were most abundant compared to seed storage proteins that began to accumulate from 45 DAP. Moreover, label-free quantification of the relative abundance of seed proteins, including important globulin proteins, revealed several distinct temporal accumulation trends among the protein classes. These results suggest that these proteins are regulated differently and require further understanding of the impact of the different environmental stresses occurring at different grain filling stages on the expression and accumulation of these seed storage proteins.


Vicia faba , Chromatography, Liquid , Plant Breeding , Proteomics , Seed Storage Proteins/metabolism , Seeds/chemistry , Tandem Mass Spectrometry , Vicia faba/chemistry
6.
J Agric Food Chem ; 68(32): 8535-8544, 2020 Aug 12.
Article En | MEDLINE | ID: mdl-32678595

Faba bean (Vicia faba L.) holds great importance for human and animal nutrition for its high protein content. However, better understanding of its seed protein composition is required in order to develop cultivars that meet market demands for plant proteins with specific quality attributes. In this study, we screened 35 diverse Vicia faba genotypes by employing the one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE) method, and 35 major protein bands obtained from three genotypes with contrasting seed protein profiles were further analyzed by mass spectrometry (MS). Twenty-five of these protein bands (MW range: ∼ 9-107 kDa) had significant (p ≤ 0.05) matches to polypeptides in protein databases. MS analysis showed that most of the analyzed protein bands contained more than one protein type and, in total, over 100 proteins were identified. These included major seed storage proteins such as legumin, vicilin, and convicilin, as well as other protein classes like lipoxygenase, heat shock proteins, sucrose-binding proteins, albumin, and defensin. Furthermore, seed protein extracts were separated by size-exclusion high-performance liquid chromatography (SE-HPLC), and percentages of the major protein classes were determined. On average, legumin and vicilin/convicilin accounted for 50 and 27% of the total protein extract, respectively. However, the proportions of these proteins varied considerably among genotypes, with the ratio of legumin:vicilin/convicilin ranging from 1:1 to 1:3. In addition, there was a significant (p < 0.01) negative correlation between the contents of these major fractions (r = -0.83). This study significantly extends the number of identified Vicia faba seed proteins and reveals new qualitative and quantitative variation in seed protein composition, filling a significant gap in the literature. Moreover, the germplasm and screening methods presented here are expected to contribute in selecting varieties with improved protein content and quality.


Plant Proteins/chemistry , Vicia faba/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Seeds/chemistry
7.
J Agric Food Chem ; 66(48): 12617-12626, 2018 Dec 05.
Article En | MEDLINE | ID: mdl-30403850

Faba bean ( Vicia faba L.) is one of the foremost candidate crops for simultaneously increasing both sustainability and global supply of plant protein. On a dry matter basis, its seeds contain about 29% protein of which more than 80% consists of globulin storage proteins (vicilin and legumin). However, to achieve optimum utilization of this crop for human and animal nutrition, both protein content and quality have to be improved. Though initial investigations on the heritability of these traits indicated the possibility for genetic improvement, little has been achieved so far, partly due to the lack of genetic information coupled with the complex relationship between protein content and grain yield. This review reports on the current knowledge on Vicia faba seed storage proteins, their structure, composition, and genetic control, and highlights key areas for further improvement of the content and composition of Vicia faba seed storage proteins on the basis of recent advances in Vicia faba genome knowledge and genetic tools.


Seed Storage Proteins/genetics , Vicia faba/genetics , Genetic Variation , Seed Storage Proteins/chemistry , Seed Storage Proteins/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Vicia faba/chemistry , Vicia faba/metabolism
...