Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8822, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38627570

ABSTRACT

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.


Subject(s)
HIV Infections , White Matter , Infant , Child , Female , Humans , Infant, Newborn , White Matter/diagnostic imaging , Diffusion Tensor Imaging , HIV Infections/drug therapy , Brain/diagnostic imaging , Mothers
2.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260347

ABSTRACT

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.

3.
Front Neurosci ; 17: 1085589, 2023.
Article in English | MEDLINE | ID: mdl-36968507

ABSTRACT

Introduction: Successful programmes for prevention of vertical HIV transmission have reduced the risk of infant HIV infection in South Africa from 8% in 2008 to below 1% in 2018/2019, resulting in an increasing population of children exposed to HIV perinatally but who are uninfected (HEU). However, the long-term effects of HIV and antiretroviral treatment (ART) exposure on the developing brain are not well understood. Whereas children who are HEU perform better than their HIV-infected counterparts, they demonstrate greater neurodevelopmental delay than children who are HIV unexposed and uninfected (HUU), especially in resource-poor settings. Here we investigate subcortical volumetric differences related to HIV and ART exposure in neonates. Methods: We included 120 infants (59 girls; 79 HEU) born to healthy women with and without HIV infection in Cape Town, South Africa, where HIV sero-prevalence approaches 30%. Of the 79 HEU infants, 40 were exposed to ART throughout gestation (i.e., mothers initiated ART pre conception; HEU-pre), and 39 were exposed to ART for part of gestation (i.e., mothers initiated ART post conception; HEU-post). Post-conception mothers had a mean (± SD) gestational age (GA) of 15.4 (± 5.7) weeks at ART initiation. Mothers with HIV received standard care fixed drug combination ART (Tenofovir/Efavirenz/Emtricitabine). Infants were imaged unsedated on a 3T Skyra (Siemens, Erlangen, Germany) at mean GA equivalent of 41.5 (± 1.0) weeks. Selected regions (caudate, putamen, pallidum, thalamus, cerebellar hemispheres and vermis, and corpus callosum) were manually traced on T1-weighted images using Freeview. Results: HEU neonates had smaller left putamen volumes than HUU [ß (SE) = -90.3 (45.3), p = 0.05] and caudate volume reductions that depended on ART exposure duration in utero. While the HEU-pre group demonstrated no caudate volume reductions compared to HUU, the HEU-post group had smaller caudate volumes bilaterally [ß (SE) = -145.5 (45.1), p = 0.002, and -135.7 (49.7), p = 0.008 for left and right caudate, respectively]. Discussion: These findings from the first postnatal month suggest that maternal ART throughout gestation is protective to the caudate nuclei. In contrast, left putamens were smaller across all HEU newborns, despite maternal ART.

4.
Alcohol Clin Exp Res ; 45(9): 1762-1774, 2021 09.
Article in English | MEDLINE | ID: mdl-34342017

ABSTRACT

BACKGROUND: Prenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double-blind, placebo-controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE-related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory. METHODS: Fifty-two infants born to heavy-drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi-echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline-related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII. RESULTS: Usable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (ß ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory. CONCLUSIONS: High-dose choline supplementation during pregnancy mitigated PAE-related regional volume reductions, with larger volumes associated with improved 12-month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE-related brain structural deficits in humans.


Subject(s)
Brain/drug effects , Choline/therapeutic use , Dietary Supplements , Ethanol/adverse effects , Neuroprotective Agents/therapeutic use , Adult , Brain/diagnostic imaging , Double-Blind Method , Female , Fetal Alcohol Spectrum Disorders , Humans , Infant , Infant, Newborn , Intelligence Tests , Magnetic Resonance Imaging , Medication Adherence , Memory/drug effects , Pregnancy , Prospective Studies , Young Adult
5.
Front Neuroanat ; 15: 639800, 2021.
Article in English | MEDLINE | ID: mdl-34163333

ABSTRACT

Fetal alcohol spectrum disorders (FASD) continue to be the leading preventable cause of intellectual disability in the U.S., Europe, and in endemic areas, such as the Western Cape region of South Africa. Arithmetic is highly sensitive to prenatal alcohol exposure (PAE). The intraparietal sulcus (IPS) is known to play a critical role in number processing. In this study, we investigate whether smaller IPS volumes play a role in the number-processing deficits observed in children with PAE. Participants were 52 9- to 14-year-old children from a historically disadvantaged community in Cape Town, who are participating in our ongoing studies on the effects of PAE on the brain. The IPS was manually parcellated into its medial (MIPS) and lateral (LIPS) walls on magnetic resonance images. The study aimed to examine: (1) the effects of PAE on IPS regional volumes and asymmetry, (2) whether IPS regional volumes are related to number processing performance and, if so, whether these relations are moderated by PAE and (3) potential mediation by regional IPS volumes of the relation between PAE and number processing performance. Total intracranial volume (TIV) was associated with volumes in all regions except the right LIPS. Both left MIPS and left LIPS volumes were significantly smaller in children in the fetal alcohol syndrome (FAS)/partial FAS (PFAS) group compared to controls. The finding in the left LIPS remained significant after controlling for potential confounders and after adjustment for the smaller overall brain size of the children in the FAS/PFAS group. Smaller left LIPS volumes in the FAS/PFAS group may account for the absence of left-right asymmetry in the LIPS in children with FAS/PFAS compared to controls and nonsyndromal heavily exposed (HE) children. Bilaterally, larger MIPS volumes were associated with better WISC IQ Arithmetic scores. These effects, however, were not moderated by the degree of PAE, and regional IPS volumes did not mediate the effect of PAE on WISC Arithmetic scores. Although we found that certain regions of the IPS were smaller in children with FAS and PFAS, these PAE-induced changes in IPS volume did not mediate the alcohol-related deficits in arithmetic.

6.
Dev Neurobiol ; 80(11-12): 381-398, 2020 11.
Article in English | MEDLINE | ID: mdl-33010114

ABSTRACT

Prenatal exposure to methamphetamine is associated with neurostructural changes, including alterations in white matter microstructure. This study investigated the effects of methamphetamine exposure on microstructure of global white matter networks in neonates. Pregnant women were interviewed beginning in mid-pregnancy regarding their methamphetamine use. Diffusion weighted imaging sets were acquired for 23 non-sedated neonates. White matter bundles associated with pairs of target regions within five networks (commissural fibers, left and right projection fibers, and left and right association fibers) were estimated using probabilistic tractography, and fractional anisotropy (FA) and diffusion measures determined within each connection. Multiple regression analyses showed that increasing methamphetamine exposure was significantly associated with reduced FA in all five networks, after control for potential confounders. Increased exposure was associated with lower axial diffusivity in the right association fiber network and with increased radial diffusivity in the right projection and left and right association fiber networks. Within the projection and association networks a subset of individual connections showed a negative correlation between FA and methamphetamine exposure. These findings are consistent with previous reports in older children and demonstrate that microstructural changes associated with methamphetamine exposure are already detectable in neonates.


Subject(s)
Brain/drug effects , Central Nervous System Stimulants/adverse effects , Methamphetamine/adverse effects , Prenatal Exposure Delayed Effects/pathology , White Matter/drug effects , Anisotropy , Brain/diagnostic imaging , Brain/pathology , Female , Humans , Image Interpretation, Computer-Assisted , Infant, Newborn , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/drug effects , Neural Pathways/pathology , Neuroimaging/methods , Pregnancy , Prenatal Exposure Delayed Effects/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology
7.
Metab Brain Dis ; 33(2): 507-522, 2018 04.
Article in English | MEDLINE | ID: mdl-29063448

ABSTRACT

Diffusion tensor imaging (DTI) studies have shown that prenatal exposure to methamphetamine is associated with alterations in white matter microstructure, but to date no tractography studies have been performed in neonates. The striato-thalamo-orbitofrontal circuit and its associated limbic-striatal areas, the primary circuit responsible for reinforcement, has been postulated to be dysfunctional in drug addiction. This study investigated potential white matter changes in the striatal-orbitofrontal circuit in neonates with prenatal methamphetamine exposure. Mothers were recruited antenatally and interviewed regarding methamphetamine use during pregnancy, and DTI sequences were acquired in the first postnatal month. Target regions of interest were manually delineated, white matter bundles connecting pairs of targets were determined using probabilistic tractography in AFNI-FATCAT, and fractional anisotropy (FA) and diffusion measures were determined in white matter connections. Regression analysis showed that increasing methamphetamine exposure was associated with reduced FA in several connections between the striatum and midbrain, orbitofrontal cortex, and associated limbic structures, following adjustment for potential confounding variables. Our results are consistent with previous findings in older children and extend them to show that these changes are already evident in neonates. The observed alterations are likely to play a role in the deficits in attention and inhibitory control frequently seen in children with prenatal methamphetamine exposure.


Subject(s)
Corpus Callosum/pathology , Methamphetamine/adverse effects , Prenatal Exposure Delayed Effects/physiopathology , White Matter/pathology , Anisotropy , Attention/drug effects , Attention/physiology , Child , Corpus Callosum/drug effects , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Infant, Newborn , Pregnancy , White Matter/drug effects
8.
Neurotoxicol Teratol ; 65: 51-59, 2018.
Article in English | MEDLINE | ID: mdl-29069607

ABSTRACT

OBJECTIVES: Prenatal exposure to methamphetamine is associated with a range of neuropsychological, behavioural and cognitive deficits. A small number of imaging studies suggests that these may be mediated by neurostructural changes, including reduced volumes of specific brain regions. This study investigated potential volumetric changes in the brains of neonates with prenatal methamphetamine exposure. To our knowledge no previous studies have examined methamphetamine effects on regional brain volumes at this age. STUDY DESIGN: Mothers were recruited antenatally and interviewed regarding methamphetamine use during pregnancy. Mothers in the exposure group reported using methamphetamine≥twice/month during pregnancy; control infants had no exposure to methamphetamine or other drugs and minimal exposure to alcohol. MRI scans were performed in the first postnatal month, following which anatomical images were processed using FreeSurfer. Subcortical and cerebellar regions were manually segmented and their volumes determined using FreeView. Pearson correlations were used to analyse potential associations between methamphetamine exposure and regional volumes. The associations between methamphetamine exposure and regional volumes were then examined adjusting for potential confounding variables. RESULTS: Methamphetamine exposure was associated with reduced left and right caudate and thalamus volumes. The association in the right caudate remained significant following adjustment for potential confounding variables. CONCLUSIONS: Our findings showing reduced caudate and thalamus volumes in neonates with prenatal methamphetamine exposure are consistent with previous findings in older exposed children, and demonstrate that these changes are already detectable in neonates. Continuing research is warranted to examine whether reduced subcortical volumes are predictive of cognitive, behavioural and affective impairment in older children.


Subject(s)
Amphetamine-Related Disorders/physiopathology , Caudate Nucleus/drug effects , Methamphetamine/toxicity , Organogenesis/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Thalamus/drug effects , Caudate Nucleus/embryology , Caudate Nucleus/pathology , Cohort Studies , Female , Humans , Infant, Newborn , Methamphetamine/urine , Organ Size , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/urine , Thalamus/embryology , Thalamus/pathology
9.
Metab Brain Dis ; 24(4): 599-613, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19821016

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a behavioural disorder that has been associated with dysfunction of the dopaminergic system. Abnormal dopamine function could be the result of a primary defect in dopamine neurons (neuronal firing, dopamine transporter, synthesis, receptor function) or an indirect result of impaired glutamate and/or noradrenergic regulation of dopamine neurons. There is considerable evidence to suggest that dopamine release is impaired at mesolimbic and nigrostriatal dopaminergic terminals. However, it is not known whether dysregulation occurs at the level of the cell bodies in the ventral tegmental area of the midbrain (VTA) and substantia nigra (SN). An in vitro superfusion technique was used to measure dopamine release in a widely used model of ADHD, the spontaneously hypertensive rat (SHR), and its normotensive Wistar-Kyoto (WKY) control. At approximately 30 days of age, rats were analysed for behavioural differences in the open field in response to acute treatment with methylphenidate (0.5 to 2 mg/kg in condensed milk, oral self-administration). In addition, rats were treated chronically with methylphenidate (2 mg/kg, oral self-administration, twice daily for 14 days from postnatal day 21 to 34) before the VTA and the SN were analysed for glutamate-stimulated and depolarization-evoked release of dopamine in these areas. In support of its use as an animal model for ADHD, SHR were more active in the open field and displayed less anxiety-like behaviour than WKY. Neither strain showed any effect of treatment with methylphenidate. A significant difference was observed in glutamate-stimulated release of dopamine in the SN of SHR and WKY, with SHR releasing more dopamine, consistent with the hypothesis of altered glutamate regulation of dopamine neurons in SHR.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Dopamine/metabolism , Glutamic Acid/metabolism , Methylphenidate/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Anxiety Disorders/drug therapy , Anxiety Disorders/etiology , Anxiety Disorders/physiopathology , Attention Deficit Disorder with Hyperactivity/physiopathology , Disease Models, Animal , Dopamine Uptake Inhibitors/pharmacology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Glutamic Acid/pharmacology , Male , Neurons/drug effects , Neurons/metabolism , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Species Specificity , Substantia Nigra/physiopathology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Up-Regulation/drug effects , Up-Regulation/physiology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL