Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14711, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679465

ABSTRACT

Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Democratic Republic of the Congo , Malaria/prevention & control , Mosquito Vectors/genetics , Biological Assay
2.
Sci Rep ; 13(1): 2363, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759650

ABSTRACT

New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Insecticides/pharmacology , Anopheles/genetics , Insecticide Resistance/genetics , Malaria/prevention & control , Mosquito Vectors/genetics , Democratic Republic of the Congo , Pyrethrins/pharmacology , Mosquito Control
3.
Infect Dis Poverty ; 11(1): 35, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35462556

ABSTRACT

BACKGROUND: New insecticides with a novel mode of action such as neonicotinoids have recently been recommended for public health by WHO. Resistance monitoring of such novel insecticides requires a robust protocol to monitor the development of resistance in natural populations. In this study, we comparatively used three different solvents to assess the susceptibility of malaria vectors to neonicotinoids across Africa. METHODS: Mosquitoes were collected from May to July 2021 from three agricultural settings in Cameroon (Njombe-Penja, Nkolondom, and Mangoum), the Democratic Republic of Congo (Ndjili-Brasserie), Ghana (Obuasi), and Uganda (Mayuge). Using the CDC bottle test, we compared the effect of three different solvents (ethanol, acetone, MERO) on the efficacy of neonicotinoids against Anopheles gambiae s.l. In addition, TaqMan assays were used to genotype key pyrethroid-resistant markers in An. gambiae and odds ratio based on Fisher exact test were used to evaluate potential cross-resistance between pyrethroids and clothianidin. RESULTS: Lower mortality was observed when using absolute ethanol or acetone alone as solvent for clothianidin (11.4‒51.9% mortality in Nkolondom, 31.7‒48.2% in Mangoum, 34.6‒56.1% in Mayuge, 39.4‒45.6% in Obuasi, 83.7‒89.3% in Congo and 71.1‒95.9% in Njombe pendja) compared to acetone + MERO for which 100% mortality were observed for all the populations. Similar observations were done for imidacloprid and acetamiprid. Synergist assays (PBO, DEM and DEF) with clothianidin revealed a significant increase of mortality suggesting that metabolic resistance mechanisms are contributing to the reduced susceptibility. A negative association was observed between the L1014F-kdr mutation and clothianidin resistance with a greater frequency of homozygote resistant mosquitoes among the dead than among survivors (OR = 0.5; P = 0.02). However, the I114T-GSTe2 was in contrast significantly associated with a greater ability to survive clothianidin with a higher frequency of homozygote resistant among survivors than other genotypes (OR = 2.10; P = 0.013). CONCLUSIONS: This study revealed a contrasted susceptibility pattern depending on the solvents with ethanol/acetone resulting to lower mortality, thus possibly overestimating resistance, whereas the MERO consistently showed a greater efficacy of neonicotinoids but it could prevent to detect early resistance development. Therefore, we recommend monitoring the susceptibility using both acetone alone and acetone + MERO (4 µg/ml for clothianidin) to capture the accurate resistance profile of the mosquito populations.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Acetone/pharmacology , Animals , Anopheles/genetics , Cameroon , Ethanol/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Neonicotinoids/pharmacology , Pyrethrins/pharmacology , Solvents/pharmacology
4.
Emerg Microbes Infect ; 9(1): 1912-1918, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32787529

ABSTRACT

Early 2019, a chikungunya virus (CHIKV) outbreak hit the Democratic Republic of the Congo (DRC). Though seldomly deadly, this mosquito-borne disease presents as an acute febrile (poly)arthralgia often followed by long-term sequelae. Although Aedes aegypti is the primary vector, an amino acid substitution in the viral envelope gene E1 (A226V) is causing concern as it results in increased transmission by Aedes albopictus, a mosquito with a much wider geographical distribution. Between January and March 2019, we collected human and mosquito samples in Kinshasa and Kongo Central province (Kasangulu and Matadi). Of the patients that were tested within 7 days of symptom onset, 49.7% (87/175) were RT-qPCR positive, while in the mosquito samples CHIKV was found in 1/2 pools in Kinshasa, 5/6 pools in Kasangulu, and 8/26 pools in Matadi. Phylogenetic analysis on whole-genome sequences showed that the circulating strain formed a monophyletic group within the ECSA2 lineage and harboured the A226V mutation. Our sequences did not cluster with sequences from previously reported outbreaks in the DRC nor with other known A226V-containing ECSA2 strains. This indicates a scenario of convergent evolution where A226V was acquired independently in response to a similar selection pressure for transmission by Ae. albopictus. This is in line with our entomological data where we detected Ae. albopictus more frequently than Ae. aegypti in two out of three affected areas. In conclusion, our findings suggest that CHIKV is adapting to the increased presence of Aedes albopictus in DRC.


Subject(s)
Aedes/virology , Amino Acid Substitution , Chikungunya Fever/epidemiology , Chikungunya virus/classification , Whole Genome Sequencing/methods , Aedes/classification , Animals , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Female , Genome, Viral , Humans , Male , Mosquito Vectors/virology , Phylogeny
5.
Malar J ; 19(1): 189, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448213

ABSTRACT

BACKGROUND: Anecdotal reports from DRC suggest that long-lasting insecticidal nets (LLIN) distributed through mass campaigns in DRC may not last the expected average three years. To provide the National Malaria Control Programme with evidence on physical and insecticidal durability of nets distributed during the 2016 mass campaign, two brands of LLIN, DawaPlus® 2.0 and DuraNet©, were monitored in neighbouring and similar health zones in Sud Ubangi and Mongala Provinces. METHODS: This was a prospective cohort study of representative samples of households from two health zones recruited at baseline, 2 months after the mass campaign. All campaign nets in these households were labelled, and followed up over a period of 31 months. Primary outcome was the "proportion of nets surviving in serviceable condition" based on attrition and integrity measures and the median survival in years. The outcome for insecticidal durability was determined by bio-assay from subsamples of campaign nets. RESULTS: A total of 754 campaign nets (109% of target) from 240 households were included in the study. Definite outcomes could be determined for 67% of the cohort nets in Sud Ubangi and 74% in Mongala. After 31 months all-cause attrition was 57% in Sud Ubangi and 76% in Mongala (p = 0.005) and attrition due to wear and tear was 26% in Sud Ubangi and 48% in Mongala (p = 0.0009). Survival in serviceable condition at the last survey was 37% in Sud Ubangi and 17% in Mongala (p = 0.003). Estimated median survival was 1.6 years for the DawaPlus® 2.0 in Mongala (95% CI 1.3-1.9) and 2.2 years for the DuraNet in Sud Ubangi (95% CI 2.0-2.4). Multivariable Cox proportionate hazard models suggest that the difference between sites was mainly attributable to the LLIN brand. Insecticidal effectiveness was optimal for DuraNet©, but significantly dropped after 24 months for DawaPlus® 2.0. CONCLUSIONS: In the environment of northwest DRC the polyethylene LLIN DuraNet© performed significantly better than the polyester LLIN DawaPlus® 2.0, but both were below a three-year median survival. Improvement of net care behaviours should be able to improve physical durability.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Democratic Republic of the Congo , Prospective Studies
6.
J Infect Dis ; 217(2): 320-328, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29087484

ABSTRACT

Accounting for approximately 11% of all malaria cases, the Democratic Republic of the Congo (DRC) is central to malaria elimination efforts. To support vector control interventions in DRC, we characterized the dynamics and impact of insecticide resistance in major malaria vectors in 2015. High Plasmodium infection rates were recorded in Anopheles gambiae and Anopheles funestus, with Plasmodium falciparum predominant over Plasmodium malariae. Both mosquito species exhibited high and multiple resistance to major public health insecticide classes. The extremely high resistance to permethrin and DDT (dichlorodiphenyltrichloroethane) in An. gambiae (low mortalities after 6 hours exposure) is worrisome, and is supported by a reduced insecticidal effect of bed nets against both mosquito species in laboratory tests. Metabolic and target site insensitivity mechanisms are driving this resistance in An. gambiae, but only the former was observed in An. funestus. These findings highlight the urgent need for actions to prolong the effectiveness of insecticide-based interventions in DRC.


Subject(s)
Anopheles/drug effects , Anopheles/parasitology , Insecticide Resistance , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology , Plasmodium/isolation & purification , Animals , DDT/pharmacology , Democratic Republic of the Congo , Disease Transmission, Infectious/prevention & control , Female , Insecticide-Treated Bednets , Insecticides/pharmacology , Malaria/prevention & control , Malaria/transmission , Male , Mosquito Control , Permethrin/pharmacology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...