Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Oncogene ; 43(14): 1007-1018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361046

ABSTRACT

One-third of pediatric patients with osteosarcoma (OS) develop lung metastases (LM), which is the primary predictor of mortality. While current treatments of patients with localized bone disease have been successful in producing 5-year survival rates of 65-70%, patients with LM experience poor survival rates of only 19-30%. Unacceptably, this situation that has remained unchanged for 30 years. Thus, there is an urgent need to elucidate the mechanisms of metastatic spread in OS and to identify targetable molecular pathways that enable more effective treatments for patients with LM. We aimed to identify OS-specific gene alterations using RNA-sequencing of extremity and LM human tissues. Samples of extremity and LM tumors, including 4 matched sets, were obtained from patients with OS. Our data demonstrate aberrant regulation of the androgen receptor (AR) pathway in LM and predicts aldehyde dehydrogenase 1A1 (ALDH1A1) as a downstream target. Identification of AR pathway upregulation in human LM tissue samples may provide a target for novel therapeutics for patients with LM resistant to conventional chemotherapy.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Child , Aldehyde Dehydrogenase/metabolism , Receptors, Androgen/genetics , Lung Neoplasms/pathology , Osteosarcoma/pathology , Bone Neoplasms/pathology , RNA
2.
Vet Comp Oncol ; 21(3): 559-564, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37148200

ABSTRACT

Twenty-four dogs with OS underwent limb amputation. Serum, OS tumour, and normal bone were harvested at time of surgery. RNA was extracted and gene expression was performed using quantitative polymerase chain reaction (qPCR). Tissue and blood copper concentrations were also determined with spectrophotometry. Compared to bone, tumour samples had significantly higher expressions of antioxidant 1 copper chaperone (ATOX1, p = .0003). OS tumour copper levels were significantly higher than that of serum (p < .010) and bone (p = .038). Similar to our previous observations in mouse and human OS, dog OS demonstrates overexpression of genes that regulate copper metabolism (ATOX1), and subsequent copper levels. Dogs with OS may provide a robust comparative oncology platform for the further study of these factors, as well as potential pharmacologic interventions.


Subject(s)
Bone Neoplasms , Dog Diseases , Osteosarcoma , Humans , Dogs , Animals , Mice , Copper , Antioxidants , Osteosarcoma/genetics , Osteosarcoma/veterinary , Osteosarcoma/metabolism , Dog Diseases/genetics , Dog Diseases/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/veterinary , Gene Expression , Copper Transport Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
3.
Clin Cancer Res ; 28(22): 4968-4982, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36074145

ABSTRACT

PURPOSE: Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN: Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS: Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS: Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma, Ewing , Sarcoma , Adolescent , Humans , Sarcoma, Ewing/pathology , Neoplasm Recurrence, Local , Osteosarcoma/drug therapy , Bone Neoplasms/pathology , Cell Communication
4.
Sarcoma ; 2022: 7157507, 2022.
Article in English | MEDLINE | ID: mdl-35125923

ABSTRACT

Aldehyde dehydrogenase 1A1 (ALDH) is a cancer stem cell marker highly expressed in metastatic cells. Disulfiram (Dis) is an FDA-approved antialcoholism drug that inhibits ALDH and has been studied as a candidate for drug repurposing in multiple neoplasia. Dis cytotoxicity in cancer cells has been shown to be copper-dependent, in part due to Dis's ability to function as a bivalent metal ion chelator of copper (Cu). The objectives of this research were to test ALDH expression levels and Cu concentrations in sarcoma patient tumors and human osteosarcoma (OS) cell lines with differing metastatic phenotypes. We also sought to evaluate Dis + Cu combination therapy in human OS cells. Intracellular Cu was inversely proportional to the metastatic phenotype in human OS cell lines (SaOS2 > LM2 > LM7). Nonmetastatic human sarcoma tumors demonstrated increased Cu concentrations compared with metastatic tumors. qPCR demonstrated that ALDH expression was significantly increased in highly metastatic LM2 and LM7 human OS cell lines compared with low metastatic SaOS2. Tumor cells from sarcoma patients with metastatic disease displayed significantly increased ALDH expression compared with tumor cells from patients without metastatic disease. Serum Cu concentration in canine OS versus normal canine patients demonstrated similar trends. Dis demonstrated selective cytotoxicity compared with human multipotential stromal cells (MSCs): Dis-treated OS cells demonstrated increased apoptosis, whereas MSCs did not. CuCl2 combined with Dis and low-dose doxorubicin resulted in a superior cytotoxic effect in both SaOS2 and LM7 cell lines. In summary, ALDH gene expression and Cu levels are altered between low and highly metastatic human OS cells, canine samples, and patient tumors. Our findings support the feasibility of a repurposed drug strategy for Dis and Cu in combination with low-dose anthracycline to specifically target metastatic OS cells.

5.
J Transl Med ; 19(1): 450, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34715874

ABSTRACT

Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Cell Line, Tumor , Cell Proliferation , Glycolysis , Humans
6.
J Bone Oncol ; 29: 100370, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34094840

ABSTRACT

Dedifferentiated chondrosarcomas (DDCS) are highly malignant bimorphic mesenchymal tumors with poor outcome and limited treatment options. Genes and proteins involved in angiogenesis play an important role in the development of invasion and metastasis. Immunohistochemical stains targeting HSP70, pERK1/2 and VEGFA were applied to a TMA containing 29 DDCS cases representing both tumor components. Higher expression of HSP70 and pERK1/2 was noted in the dedifferentiated component. RNA sequencing performed in 8 paired cases of DDCS comparing well differentiated and dedifferentiated components, showed higher expression of several HSP70 family members and HSP90 in the dedifferentiated component. Furthermore, high mobility group AT-hook 2 (HMAG2) and SET nuclear proto-oncogene demonstrated higher expression in the dedifferentiated component. Thus, the well differentiated and dedifferentiated components of DDCS are different, histologically and transcriptomically. The dedifferentiated component of DDCS shows higher expression of markers that are associated with malignant behavior. Some of these may represent future treatment targets.

7.
J Bone Oncol ; 29: 100363, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34040953

ABSTRACT

INTRODUCTION: Bone is the most common distant site of breast cancer metastasis. Skeletal lesions can cause significant morbidity due to pain, pathologic fracture, and electrolyte abnormalities. Current treatment for patients with bone metastases (BoM) from breast cancer is highly personalized and often involves a multidisciplinary approach with chemotherapy, hormone therapy, bone-targeted antiresorptive agents, radiation therapy, and surgery. We have retrospectively collected clinical data from a series of patients with bone metastases to evaluate the clinical characteristics, prognostic factors, and survival patterns of patients with breast cancer BoM receiving standard multimodal therapy. METHODS: A consecutive series of 167 patients with breast cancer BoM treated at a single institution between August 2013 and March 2020 were identified. Clinical information was obtained from the medical record and survival analyses were performed to evaluate patient outcomes and identify prognostic factors. RESULTS: Thirty-seven patients (22%) presented with de novo BoM - bone metastases at the time of breast cancer diagnosis - and were 2.6 times more likely to die within the study period than those with asynchronous BoM (HR = 2.62, p = <0.0001). Patients who received bone-targeted medical therapy were 61% less likely to die after BoM diagnosis than those who did not (HR = 0.39, p = 0.001). Operative stabilization of BoM was more frequently employed in patients with lytic (p = 0.02) or mixed (p = 0.02) tumors than it was for those with blastic lesions. Patients treated with surgery had a lower overall bone metastasis survival than those treated without (p < 0.03). DISCUSSION: These findings reflect the current patterns in metastatic breast cancer treatment and associated outcomes. In a series of 167 consecutive patients, we demonstrate the natural history of breast cancer with BoM being treated with modern multimodal therapy. Understanding these treatment patterns and prognostic factors enhances the provider's ability to counsel patients and direct appropriate treatments.

8.
Endocrinology ; 162(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-33963375

ABSTRACT

The steroid receptor coactivator-1 (SRC-1) is a nuclear receptor co-activator, known to play key roles in both estrogen response in bone and in breast cancer metastases. We previously demonstrated that the P1272S single nucleotide polymorphism (SNP; P1272S; rs1804645) in SRC-1 decreases the activity of estrogen receptor in the presence of selective estrogen receptor modulators (SERMs) and that it is associated with a decrease in bone mineral density (BMD) after tamoxifen therapy, suggesting it may disrupt the agonist action of tamoxifen. Given such dual roles of SRC-1 in the bone microenvironment and in tumor cell-intrinsic phenotypes, we hypothesized that SRC-1 and a naturally occurring genetic variant, P1272S, may promote breast cancer bone metastases. We developed a syngeneic, knock-in mouse model to study if the SRC-1 SNP is critical for normal bone homeostasis and bone metastasis. Our data surprisingly reveal that the homozygous SRC-1 SNP knock-in increases tamoxifen-induced bone protection after ovariectomy. The presence of the SRC-1 SNP in mammary glands resulted in decreased expression levels of SRC-1 and reduced tumor burden after orthotopic injection of breast cancer cells not bearing the SRC-1 SNP, but increased metastases to the lungs in our syngeneic mouse model. Interestingly, the P1272S SNP identified in a small, exploratory cohort of bone metastases from breast cancer patients was significantly associated with earlier development of bone metastasis. This study demonstrates the importance of the P1272S SNP in both the effect of SERMs on BMD and the development of tumor in the bone.


Subject(s)
Adenocarcinoma/secondary , Bone Density/genetics , Bone Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Nuclear Receptor Coactivator 1/physiology , Adenocarcinoma/genetics , Animals , Bone Neoplasms/genetics , Bone and Bones/drug effects , Bone and Bones/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Knock-In Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/genetics , Mice, Transgenic , Polymorphism, Single Nucleotide , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology
9.
Clin Orthop Relat Res ; 479(3): 477-490, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32469486

ABSTRACT

BACKGROUND: In high-grade chondrosarcoma, 5-year survival is lower than 50%. Therefore, it is important that preclinical models that mimic the disease with the greatest possible fidelity are used to potentially develop new treatments. Accumulating evidence suggests that two-dimensional (2-D) cell culture may not accurately represent the tumor's biology. It has been demonstrated in other cancers that three-dimensional (3-D) cancer cell spheroids may recapitulate tumor biology and response to treatment with greater fidelity than traditional 2-D techniques. To our knowledge, the formation of patient-derived chondrosarcoma spheroids has not been described. QUESTIONS/PURPOSES: (1) Can patient-derived chondrosarcoma spheroids be produced? (2) Do spheroids recapitulate human chondrosarcoma better than 2-D cultures, both morphologically and molecularly? (3) Can chondrosarcoma spheroids provide an accurate model to test novel treatments? METHODS: Experiments to test the feasibility of spheroid formation of chondrosarcoma cells were performed using HT-1080, an established chondrosarcoma cell line, and two patient-derived populations, TP19-S26 and TP19-S115. Cells were cultured in flasks, trypsinized, and seeded into 96-well ultra-low attachment plates with culture media. After spheroids formed, they were monitored daily by bright-field microscopy. Spheroids were fixed using paraformaldehyde and embedded in agarose. After dehydration with isopropanol, paraffin-embedded spheroids were sectioned, and slides were stained with hematoxylin and eosin. To compare differences and similarities in gene expression between 2-D and 3-D chondrosarcoma cultures and primary tumors, and to determine whether these spheroids recapitulated the biology of chondrosarcoma, RNA was extracted from 2-D cultures, spheroids, and tumors. Quantitative polymerase chain reaction was performed to detect chondrosarcoma markers of interest, including vascular endothelial growth factor alpha, hypoxia-inducible factor 1α, COL2A1, and COL10A1. To determine whether 2-D and 3-D cultures responded differently to novel chondrosarcoma treatments, we compared their sensitivities to disulfiram and copper chloride treatment. To test their sensitivity to disulfiram and copper chloride treatment, 10,000 cells were seeded into 96-well plates for 2-D culturing and 3000 cells in each well for 3-D culturing. After treating the cells with disulfiram and copper for 48 hours, we detected cell viability using quantitative presto-blue staining and measured via plate reader. RESULTS: Cell-line and patient-derived spheroids were cultured and monitored over 12 days. Qualitatively, we observed that HT-1080 demonstrated unlimited growth, while TP19-S26 and TP19-S115 contracted during culturing relative to their initial size. Hematoxylin and eosin staining of HT-1080 spheroids revealed that cell-cell attachments were more pronounced at the periphery of the spheroid structure than at the core, while the core was less dense. Spheroids derived from the intermediate-grade chondrosarcoma TP19-S26 were abundant in extracellular matrix, and spheroids derived from the dedifferentiated chondrosarcoma TP19-S115 had a higher cellularity and heterogeneity with spindle cells at the periphery. In the HT-1080 cells, differences in gene expression were appreciated with spheroids demonstrating greater expressions of VEGF-α (1.01 ± 0.16 versus 6.48 ± 0.55; p = 0.003), COL2A1 (1.00 ± 0.10 versus 7.46 ± 2.52; p < 0.001), and COL10A1 (1.01 ± 0.19 versus 22.53 ± 4.91; p < 0.001). Differences in gene expressions were also noted between primary tumors, spheroids, and 2-D cultures in the patient-derived samples TP19-S26 and TP19-S115. TP19-S26 is an intermediate-grade chondrosarcoma. With the numbers we had, we could not detect a difference in VEGF-α and HIF1α gene expression compared with the primary tumor. COL2A1 (1.00 ± 0.14 versus 1.76 ± 0.10 versus 335.66 ± 31.13) and COL10A1 (1.06 ± 0.378 versus 5.98 ± 0.45 versus 138.82 ± 23.4) expressions were both greater in the tumor (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) and 3-D cultures (p (COL2A1) = 0.004; p (COL10A1) < 0.0001) compared with 2-D cultures. We could not demonstrate a difference in VEGF-α and HIF1α expressions in TP19-S115, a dedifferentiated chondrosarcoma, in the tumor compared with 2-D and 3-D cultures. COL2A1 (1.00 ± 0.02 versus 1.86 ± 0.18 versus 2.95 ± 0.56) and COL10A1 (1.00 ± 0.03 versus 5.52 ± 0.66 versus 3.79 ± 0.36) expressions were both greater in spheroids (p (COL2A1) = 0.003; p (COL10A1) < 0.0001) and tumors (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) compared with 2-D cultures. Disulfiram-copper chloride treatment demonstrated high cytotoxicity in HT-1080 and SW-1353 chondrosarcoma cells grown in the 2-D monolayer, but 3-D spheroids were highly resistant to this treatment. CONCLUSION: We provide preliminary findings that it is possible to generate 3-D spheroids from chondrosarcoma cell lines and two human chondrosarcomas (one dedifferentiated chondrosarcoma and one intermediate-grade chondrosarcoma). Chondrosarcoma spheroids derived from human tumors demonstrated morphology more reminiscent of primary tumors than cells grown in 2-D culture. Spheroids displayed similar expressions of cartilage markers as the primary tumor, and we observed a higher expression of collagen markers in the spheroids compared with cells grown in monolayer. Spheroids also demonstrated greater chemotherapy resistance than monolayer cells, but more patient-derived spheroids are needed to further conclude that 3-D cultures may mimic the chemoresistance that chondrosarcomas demonstrate clinically. Additional studies on patient-derived chondrosarcoma spheroids are warranted. CLINICAL RELEVANCE: Chondrosarcomas demonstrate resistance to chemotherapy and radiation, and we believe that if they can be replicated, models such as 3-D spheroids may provide a method to test novel treatments for human chondrosarcoma. Additional comprehensive genomic studies are required to compare 2-D and 3-D models with the primary tumor to determine the most effective way to study this disease in vitro.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Models, Biological , Spheroids, Cellular , Tumor Cells, Cultured , Feasibility Studies , Humans
10.
Mol Cancer Ther ; 19(2): 420-431, 2020 02.
Article in English | MEDLINE | ID: mdl-31784454

ABSTRACT

Bone is the most preferred site for colonization of metastatic breast cancer cells for each subtype of the disease. The standard of therapeutic care for breast cancer patients with bone metastasis includes bisphosphonates (e.g., zoledronic acid), which have poor oral bioavailability, and a humanized antibody (denosumab). However, these therapies are palliative, and a subset of patients still develop new bone lesions and/or experience serious adverse effects. Therefore, a safe and orally bioavailable intervention for therapy of osteolytic bone resorption is still a clinically unmet need. This study demonstrates suppression of breast cancer-induced bone resorption by a small molecule (sulforaphane, SFN) that is safe clinically and orally bioavailable. In vitro osteoclast differentiation was inhibited in a dose-dependent manner upon addition of conditioned media from SFN-treated breast cancer cells representative of different subtypes. Targeted microarrays coupled with interrogation of The Cancer Genome Atlas data set revealed a novel SFN-regulated gene signature involving cross-regulation of runt-related transcription factor 2 (RUNX2) and nuclear factor-κB and their downstream effectors. Both RUNX2 and p65/p50 expression were higher in human breast cancer tissues compared with normal mammary tissues. RUNX2 was recruited at the promotor of NFKB1 Inhibition of osteoclast differentiation by SFN was augmented by doxycycline-inducible stable knockdown of RUNX2. Oral SFN administration significantly increased the percentage of bone volume/total volume of affected bones in the intracardiac MDA-MB-231-Luc model indicating in vivo suppression of osteolytic bone resorption by SFN. These results indicate that SFN is a novel inhibitor of breast cancer-induced osteolytic bone resorption in vitro and in vivo.


Subject(s)
Bone Neoplasms/secondary , Bone Resorption/metabolism , Breast Neoplasms/drug therapy , Gene Regulatory Networks/genetics , Isothiocyanates/therapeutic use , Animals , Female , Humans , Isothiocyanates/pharmacology , Mice , Sulfoxides
11.
Am J Cancer Res ; 9(8): 1746-1756, 2019.
Article in English | MEDLINE | ID: mdl-31497355

ABSTRACT

Cancer-associated cachexia is a wasting syndrome that affects up to 50% of cancer patients. It is defined as unintentional weight loss ≥5% over 6 months and characterized by muscle atrophy, fatigue, and anorexia that are refractory to nutritional support. Sarcoma describes a diverse group of malignancies arising from the connective tissues. Sarcoma patients are uniquely susceptible to cancer-associated cachexia given its origins in the musculoskeletal system. Our previous research suggests that sarcoma cells may contribute to sarcoma-associated cachexia (SAC) via establishment of TNF-α-mediated inflammation and dysregulation of muscle homeostasis by abnormal Notch signaling. Here, we examine the role of the Notch pathway and pro-inflammatory cytokines in cells derived from cachectic and non-cachectic human sarcoma patients. We observed increased expression of Notch pathway genes in the cachexia group while no differences in pro-inflammatory cytokines were observed. Co-culture of muscle-derived stem cells (MDSCs) and sarcoma cells demonstrated the inhibition of MDSC maturation with both cachectic and non-cachectic patient cells, corresponding to elevated Pax7 and Notch pathway expression in MDSCs. Our findings suggest that there is no difference in inflammatory profile between cachexia and non-cachexia sarcoma samples. However, Cachectic sarcoma samples express increased Notch that mediates muscle wasting possibly through inhibition of myogenesis.

12.
Sarcoma ; 2019: 1320201, 2019.
Article in English | MEDLINE | ID: mdl-31379466

ABSTRACT

Although many cancer cells have significantly higher copper concentrations compared with normal cells and tissues, the role of copper in cancer biology and metastatic disease remains poorly understood. Here, we study the importance of copper in osteosarcoma, which frequently metastasizes to the lungs and is often chemoresistant. K12 and K7M2 are murine OS cells with differing metastatic phenotypes: K7M2 is highly metastatic, whereas K12 is much less so. Intracellular copper levels were determined using atomic absorption. Copper transporters were quantified by qPCR. Cytotoxicity of doxorubicin, disulfiram, and copper(II) chloride was assessed with a cell viability fluorescence stain. Additionally, K7M2 viable cell counts were determined by trypan blue exclusion staining after 72 hours of treatment. Copper levels were found to be significantly higher in K12 OS cells than in K7M2 cells. qPCR showed that K12 cells upregulate the copper influx pump CTR1 and downregulate the copper efflux pump ATP7A compared to K7M2 OS cells. Combination treatment of copper chloride (50 nM) with disulfiram (80 nM) was only cytotoxic to K12 cells. Triple treatment with doxorubicin, disulfiram, and copper displayed potent and durable cytotoxicity of highly metastatic K7M2 cells. We demonstrate here that murine OS cell lines differing in metastatic potential also vary in endogenous copper levels and regulation. Additionally, these differences in copper regulation may contribute to selective cytotoxicity of K12 cells by extremely low doses of copper-potentiated disulfiram. The combination of doxorubicin, disulfiram, and copper should be explored as a therapeutic strategy against OS metastases.

13.
NPJ Breast Cancer ; 5: 19, 2019.
Article in English | MEDLINE | ID: mdl-31263748

ABSTRACT

Invasive lobular carcinoma (ILC) is an understudied subtype of breast cancer that requires novel therapies in the advanced setting. To study acquired resistance to endocrine therapy in ILC, we have recently performed RNA-Sequencing on long-term estrogen deprived cell lines and identified FGFR4 overexpression as a top druggable target. Here, we show that FGFR4 expression also increases dramatically in endocrine-treated distant metastases, with an average fold change of 4.8 relative to the paired primary breast tumor for ILC, and 2.4-fold for invasive ductal carcinoma (IDC). In addition, we now report that FGFR4 hotspot mutations are enriched in metastatic breast cancer, with an additional enrichment for ILC, suggesting a multimodal selection of FGFR4 activation. These data collectively support the notion that FGFR4 is an important mediator of endocrine resistance in ILC, warranting future mechanistic studies on downstream signaling of overexpressed wild-type and mutant FGFR4.

14.
Ann Surg Oncol ; 26(3): 894-898, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30588559

ABSTRACT

BACKGROUND: Surgical resection with negative margins is the foundation of extremity sarcoma management. Failure to achieve negative surgical margins can result in local recurrence (LR), a potentially devastating complication. Indocyanine green (ICG) is a US FDA-approved fluorophore previously used to guide carcinoma resections. We investigated the potential of ICG as an intraoperative guide during experimental sarcoma resection. METHODS: Fifty 6-week-old immunocompetent Balb/c female mice received left proximal tibia paraphyseal injections of 5 × 105 K7M2 murine osteosarcoma cells. Animals were separated into two groups (n = 25 each): (1) ICG-assisted surgical resection; and (2) no ICG-assisted resection. Resections were performed 4 weeks after primary tumor engraftment. All animals received 7.5 ug ICG via retro-orbital injection 12 h prior to surgery. ICG fluorescence measurements and clinical evaluations were performed 4 weeks after resection to detect LR. RESULTS: Eleven of 25 animals from each group developed gross tumors. Four weeks after resection, group 1 had 0/11 tumor recurrences, while group 2 had recurrences in 9/11 (81.8%) experimental mice (p < 0.0002) (Fig. 2). There was a 100% NPV in group 1, and no tumor recurrence with fluorescence-free margins after the primary surgery. Group 2 had a 100% positive predictive value for the development of an LR if any fluorescent signal was present at the surgical margin after resection. CONCLUSION: Intraoperative ICG guidance led to reliably negative surgical margins and a diminished LR rate. Given the benign safety profile of ICG and its prior clinical success, these results could be immediately translatable to the clinical realm.


Subject(s)
Bone Neoplasms/surgery , Fluorescein Angiography/methods , Fluorescence , Neoplasm Recurrence, Local/prevention & control , Optical Imaging/methods , Osteosarcoma/surgery , Surgery, Computer-Assisted/methods , Animals , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Female , Fluorescent Dyes , Indocyanine Green/metabolism , Intraoperative Care , Margins of Excision , Mice , Mice, Inbred BALB C , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Osteosarcoma/diagnostic imaging , Osteosarcoma/pathology
15.
Mol Cancer Res ; 17(2): 457-468, 2019 02.
Article in English | MEDLINE | ID: mdl-30355675

ABSTRACT

DNA sequencing has identified a limited number of driver mutations in metastatic breast cancer beyond single base-pair mutations in the estrogen receptor (ESR1). However, our previous studies and others have observed that structural variants, such as ESR1 fusions, may also play a role. Therefore, we expanded upon these observations by performing a comprehensive and highly sensitive characterization of copy-number (CN) alterations in a large clinical cohort of metastatic specimens. NanoString DNA hybridization was utilized to measure CN gains, amplifications, and deletions of 67 genes in 108 breast cancer metastases, and in 26 cases, the patient-matched primary tumor. For ESR1, a copyshift algorithm was applied to identify CN imbalances at exon-specific resolution and queried large data sets (>15,000 tumors) that had previously undergone next-generation sequencing (NGS). Interestingly, a subset of ER+ tumors showed increased ESR1 CN (11/82, 13%); three had CN amplifications (4%) and eight had gains (10%). Increased ESR1 CN was enriched in metastatic specimens versus primary tumors, and this was orthogonally confirmed in a large NGS data set. ESR1-amplified tumors showed a site-specific enrichment for bone metastases and worse outcomes than nonamplified tumors. No ESR1 CN amplifications and only one gain was identified in ER- tumors. ESR1 copyshift was present in 5 of the 11 ESR1-amplified tumors. Other frequent amplifications included ERBB2, GRB7, and cell-cycle pathway members CCND1 and CDK4/6, which showed mutually exclusivity with deletions of CDKN2A, CDKN2B, and CDKN1B. IMPLICATIONS: Copy-number alterations of ESR1 and key CDK pathway genes are frequent in metastatic breast cancers, and their clinical relevance should be tested further.


Subject(s)
Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Estrogen Receptor alpha/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , DNA, Neoplasm/genetics , Female , Gene Amplification , Humans , MCF-7 Cells , Neoplasm Metastasis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Signal Transduction
16.
Oncotarget ; 9(53): 30163-30172, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-30046395

ABSTRACT

INTRODUCTION: The overall survival rate of patients with osteosarcoma (OS) and pulmonary metastases has remained stagnant at 15-30% for several decades. Disulfiram (DSF) is an FDA-approved aldehyde dehydrogenase inhibitor that reduces the metastatic phenotype of OS cells in vitro. Here we evaluate its in vivo efficacy, as compared to doxorubicin chemotherapy, in a previously-validated orthotopic model of metastatic OS. RESULTS: All treatment groups displayed a significantly reduced quantitative OS metastatic burden compared with controls. The metastatic burden of Lo DSF-treated animals was equivalent to the DXR group. Ninety-five percent of control animals displayed evidence of metastatic disease, which was significantly greater than all treatment groups. DISCUSSION: Disulfiram treatment resulted in a reduced burden of OS metastatic disease compared with controls. This was statistically-equivalent to doxorubicin. No additive effect was observed between these two therapies. MATERIALS AND METHODS: One-hundred twenty immunocompetent Balb/c mice received proximal tibia paraphyseal injections of 5 × 105 K7M2 murine OS cells. Therapy began three weeks after injection: saline (control), low-dose disulfiram (Lo DSF), high-dose disulfiram (Hi DSF), doxorubicin (DXR), Lo DSF + DXR, and Hi DSF + DXR. Transfemoral amputations were performed at 4 weeks. Quantitative metastatic tumor burden was measured using near-infrared indocyanine green (ICG) angiography.

17.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878133

ABSTRACT

Bone metastases (BoM) are a significant cause of morbidity in patients with estrogen receptor-positive (ER-positive) breast cancer; yet, characterizations of human specimens are limited. In this study, exome-capture RNA sequencing (ecRNA-seq) on aged (8-12 years), formalin-fixed, paraffin-embedded (FFPE), and decalcified cancer specimens was evaluated. Gene expression values and ecRNA-seq quality metrics from FFPE or decalcified tumor RNA showed minimal differences when compared with matched flash-frozen or nondecalcified tumors. ecRNA-seq was then applied on a longitudinal collection of 11 primary breast cancers and patient-matched synchronous or recurrent BoMs. Overtime, BoMs exhibited gene expression shifts to more Her2 and LumB PAM50 subtype profiles, temporally influenced expression evolution, recurrently dysregulated prognostic gene sets, and longitudinal expression alterations of clinically actionable genes, particularly in the CDK/Rb/E2F and FGFR signaling pathways. Taken together, this study demonstrates the use of ecRNA-seq on decade-old and decalcified specimens and defines recurrent longitudinal transcriptional remodeling events in estrogen-deprived breast cancers.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Calcinosis/genetics , Exome , Sequence Analysis, RNA , Adult , Bone Neoplasms/pathology , Cohort Studies , Female , Genes, erbB-2 , Humans , Middle Aged
18.
JAMA Oncol ; 3(5): 666-671, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27926948

ABSTRACT

IMPORTANCE: Patients with breast cancer (BrCa) brain metastases (BrM) have limited therapeutic options. A better understanding of molecular alterations acquired in BrM could identify clinically actionable metastatic dependencies. OBJECTIVE: To determine whether there are intrinsic subtype differences between primary tumors and matched BrM and to uncover BrM-acquired alterations that are clinically actionable. DESIGN, SETTING, AND PARTICIPANTS: In total, 20 cases of primary breast cancer tissue and resected BrM (10 estrogen receptor [ER]-negative and 10 ER-positive) from 2 academic institutions were included. Eligible cases in the discovery cohort harbored patient-matched primary breast cancer tissue and resected BrM. Given the rarity of patient-matched samples, no exclusion criteria were enacted. Two validation sequencing cohorts were used-a published data set of 17 patient-matched cases of BrM and a cohort of 7884 BrCa tumors enriched for metastatic samples. MAIN OUTCOMES AND MEASURES: Brain metastases expression changes in 127 genes within BrCa signatures, PAM50 assignments, and ERBB2/HER2 DNA-level gains. RESULTS: Overall, 17 of 20 BrM retained the PAM50 subtype of the primary BrCa. Despite this concordance, 17 of 20 BrM harbored expression changes (<2-fold or >2-fold) in clinically actionable genes including gains of FGFR4 (n = 6 [30%]), FLT1 (n = 4 [20%]), AURKA (n = 2 [10%]) and loss of ESR1 expression (n = 9 [45%]). The most recurrent expression gain was ERBB2/HER2, which showed a greater than 2-fold expression increase in 7 of 20 BrM (35%). Three of these 7 cases were ERBB2/HER2-negative out of 13 ERBB2/HER2-negative in the primary BrCa cohort and became immunohistochemical positive (3+) in the paired BrM with metastasis-specific amplification of the ERBB2/HER2 locus. In an independent data set, 2 of 9 (22.2%) ERBB2/HER2-negative BrCa switched to ERBB2/HER2-positive with 1 BrM acquiring ERBB2/HER2 amplification and the other showing metastatic enrichment of the activating V777L ERBB2/HER2 mutation. An expanded cohort revealed that ERBB2/HER2 amplification and/or mutation frequency was unchanged between local disease and metastases across all sites; however, a significant enrichment was appreciated for BrM (13% local vs 24% BrM; P < .001). CONCLUSIONS AND RELEVANCE: Breast cancer BrM commonly acquire alterations in clinically actionable genes, with metastasis-acquired ERBB2/HER2 alterations in approximately 20% of ERBB2/HER2-negative cases. These observations have immediate clinical implications for patients with ERBB2/HER2-negative breast cancer and support comprehensive profiling of metastases to inform clinical care.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Mutation , Receptor, ErbB-2/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Breast Neoplasms/metabolism , Female , Gene Amplification , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Receptor, ErbB-2/metabolism
19.
Clin Cancer Res ; 22(5): 1130-7, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26500237

ABSTRACT

PURPOSE: Given the clinical relevance of ESR1 mutations as potential drivers of resistance to endocrine therapy, this study used sensitive detection methods to determine the frequency of ESR1 mutations in primary and metastatic breast cancer, and in cell-free DNA (cfDNA). EXPERIMENTAL DESIGN: Six ESR1 mutations (K303R, S463P, Y537C, Y537N, Y537S, D538G) were assessed by digital droplet PCR (ddPCR), with lower limits of detection of 0.05% to 0.16%, in primary tumors (n = 43), bone (n = 12) and brain metastases (n = 38), and cfDNA (n = 29). Correlations between ESR1 mutations in metastatic lesions and single (1 patient) or serial blood draws (4 patients) were assessed. RESULTS: ESR1 mutations were detected for D538G (n = 13), Y537S (n = 3), and Y537C (n = 1), and not for K303R, S463P, or Y537N. Mutation rates were 7.0% (3/43 primary tumors), 9.1% (1/11 bone metastases), 12.5% (3/24 brain metastases), and 24.1% (7/29 cfDNA). Two patients showed polyclonal disease with more than one ESR1 mutation. Mutation allele frequencies were 0.07% to 0.2% in primary tumors, 1.4% in bone metastases, 34.3% to 44.9% in brain metastases, and 0.2% to 13.7% in cfDNA. In cases with both cfDNA and metastatic samples (n = 5), mutations were detected in both (n = 3) or in cfDNA only (n = 2). Treatment was associated with changes in ESR1 mutation detection and allele frequency. CONCLUSIONS: ESR1 mutations were detected at very low allele frequencies in some primary breast cancers, and at high allele frequency in metastases, suggesting that in some tumors rare ESR1-mutant clones are enriched by endocrine therapy. Further studies should address whether sensitive detection of ESR1 mutations in primary breast cancer and in serial blood draws may be predictive for development of resistant disease. See related commentary by Gu and Fuqua, p. 1034.


Subject(s)
Bone Neoplasms/genetics , Brain Neoplasms/genetics , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Adult , Aged , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Clonal Evolution/genetics , DNA, Neoplasm/genetics , Female , Gene Frequency , Humans , Lymphatic Metastasis/genetics , Middle Aged , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...