Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 13(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36292838

ABSTRACT

Cultivar resistance is an essential management strategy for the Mexican rice borer, Eoreuma loftini (Dyar), in sugarcane in the USA, but resistance mechanisms are poorly understood. Resistance was evaluated among Louisiana's (USA) commercial sugarcane cultivars and experimental clones through field screenings, greenhouse trials, and a diet incorporation assay. Cultivars L 01-299 and HoCP 85-845 had the lowest borer injury levels, while HoCP 00-950 and L 12-201 were among the most heavily injured in field and greenhouse trials. The variability of results between the two field trials suggests that a genotype × environment interaction might affect the expression of resistance. Oviposition did not differ among evaluated cultivars in the greenhouse choice study. Results from the no-choice experiment showed that neonatal establishment differed among cultivars by up to 3-fold. In a diet incorporation assay, all cultivars reduced larval weight up to 86.5% and increased days to pupation by 1.8-fold relative to the diet-only control. Collectively, these results suggest that Louisiana's sugarcane breeding germplasm contains various resistance levels to E. loftini, emphasizing the importance of screening cultivars before they are released to growers. Future studies should try to determine the influence of environmental factors on resistance expression.

2.
J Econ Entomol ; 115(2): 671-681, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35137138

ABSTRACT

Plant resistance is a key strategy for the management of Oryzophagus oryzae (Costa Lima) (Coleoptera: Curculionidae), an important pest in South American rice paddies. The present study investigated the resistance of rice cultivars in terms of feeding and oviposition preference, growth, development, and biological performance of O. oryzae under natural conditions of field infestation during two consecutive rice seasons. There were no effects of the six cultivars on the feeding and oviposition preferences of O. oryzae as evaluated 5, 8, and 11 d After Flooding (DAF) of the plots, indicating the absence of antixenosis. Cultivars did not differ in terms of egg viability and larval density of first instars on the roots at 15 DAF. Significant differences were found 25 and 35 DAF when larval density per sample was high on 'BRS Pampa CL' (up to 24.5), intermediate on 'BRS Querência' and 'BRS Ligeirinho' (up to 16.1), and low on 'BRS Atalanta', 'BRS Firmeza', and 'Dawn' (up to 8.8). The cultivars 'BRS Atalanta', 'BRS Firmeza', and 'Dawn' caused malnutrition and inhibition of larval growth. These effects, typical of antibiosis, resulted in delayed pupation and emergence of adults; in addition, emerged females had body weight decreased strongly. The cultivars BRS Pampa CL, BRS Querência, and BRS Ligeirinho are susceptible, resulting in high larval populations and more suitable development of O. oryzae; antibiosis, as indicated for 'BRS Atalanta', 'BRS Firmeza', and 'Dawn', probably is the key mechanism of rice resistance to O. oryzae.


Subject(s)
Coleoptera , Lepidoptera , Oryza , Weevils , Animals , Antibiosis , Female , Larva , Oryza/physiology , Oviposition
3.
Plants (Basel) ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616279

ABSTRACT

Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.

4.
Plants (Basel) ; 10(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34834741

ABSTRACT

Swietenia macrophylla is an economically important tree species propagated by seeds that lose their viability in a short time, making seed germination a key stage for the species recruitment. The objective of this study was to determine the cardinal temperatures and thermal time for seed germination of S. macrophylla; and its potential distribution under different climate change scenarios. Seeds were placed in germination chambers at constant temperatures from 5 to 45 °C and their thermal responses modelled using a thermal time approach. In addition, the potential biogeographic distribution was projected according to the Community Climate System Model version 4 (CCSM4). Germination rate reached its maximum at 37.3 ± 1.3 °C (To); seed germination decreased to near zero at 52.7 ± 2.2 °C (ceiling temperature, Tc) and at 12.8 ± 2.4 °C (base temperature, Tb). The suboptimal thermal time θ150 needed for 50% germination was ca. 190 °Cd, which in the current scenario is accumulated in 20 days. The CCSM4 model estimates an increase of the potential distribution of the species of 12.3 to 18.3% compared to the current scenario. The temperature had an important effect on the physiological processes of the seeds. With the increase in temperature, the thermal needs for germination are completed in less time, so the species will not be affected in its distribution. Although the distribution of the species may not be affected, it is crucial to generate sustainable management strategies to ensure its long-term conservation.

5.
PeerJ ; 8: e9898, 2020.
Article in English | MEDLINE | ID: mdl-32999763

ABSTRACT

BACKGROUND: Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. METHODS: A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e. endemic status, threat status, availability in seed collections, reports on plant uses and conservation actions currently in place. With this information, a comprehensive catalogue of native trees from Mexico was redacted. Available georeferenced records were used to map each species distribution and perform spatial analyses to identify gaps of information and priority areas for their conservation and exploration. RESULTS: Mexico has at least 2,885 native tree species, belonging to 612 genera and 128 families. Fabaceae is the most represented family and Quercus the most represented genus. Approximately 44% of tree species are endemic to the country. The southern part of the country showed the highest values of species richness. Six hundred and seventy-four species have at least one documented human use. In terms of conservation assessment, ca. 33% of species have been assessed by either the IUCN Red List (919) or the National protection catalogue "NORMA Oficial Mexicana NOM-059" (29) or both (45). Additionally, 98 species have been included in the CITES listing for protection. In terms of existing conservation efforts, 19% of species have ex situ protection in seed banks, while protected areas overlap with all the identified peaks of species richness, except for those in the states of Veracruz and Chiapas. This work constitutes a key milestone for the knowledge, management, and conservation of the Mexican native trees. The two areas with high density of tree species identified in Veracruz and Chiapas represent two priority areas for tree conservation in Mexico, where integrated in situ and ex situ conservation efforts should be focused.

6.
J Econ Entomol ; 113(2): 1018-1022, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31778533

ABSTRACT

Tagosodes orizicolus (Muir) is the most important pest of rice in Latin America. Besides causing direct damage called hopperburn from feeding on and ovipositing in rice leaves, this insect pest also transmits rice hoja blanca virus (RHBV, Family Phenuiviridae, Genus Tenuivirus) in a persistent-propagative manner. This pathosystem can cause up to 100% yield loss in Latin American rice fields. T. orizicolus and RHBV symptoms were detected in Louisiana, Mississippi, and Florida rice fields in the 1950s, 1960s, and 1980s. However, neither has been detected in the United States since. Two outbreaks of T. orizicolus on ratoon rice occurred in the fall of 2015 and 2018 in counties southwest and south of Houston, TX. Insects were collected from ratoon rice fields by sweep net methods. Insects from the 2015 and 2018 outbreaks were tested individually and in pools of 10, respectively, for RHBV infection and the cytochrome oxidase 1 (CO1) gene from Delphacidae. No insects were positive for RHBV, however, all samples yielded amplicons for the CO1 gene. Furthermore, the CO1 gene from five 2015 individuals was sequenced and found to have a 100% identity to the Fer26_Argentina and 99.81% identity to the DEL074 Venezuela isolates of T. orizicolus. Five new sequences from 2015 individuals have now been deposited in GenBank. It is imperative to stay up to date on the potential invasion and establishment of this exotic pest of rice in Texas and other rice-growing regions of the United States through continued monitoring and research.


Subject(s)
Hemiptera , Infections , Oryza/virology , Tenuivirus , Animals , Argentina , Florida , Louisiana , Mississippi , Texas
7.
J Econ Entomol ; 108(3): 1363-70, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26470265

ABSTRACT

The Mexican rice borer, Eoreuma loftini (Dyar), is a major pest of sugarcane (hybrids of Saccharum spp.) in Louisiana and Texas. Resistance to E. loftini was evaluated in 51 commercial and experimental cultivars of sugarcane, energycane (hybrids of Saccharum spp.), and sorghum [Sorghum bicolor (L.) Moench and hybrids of Sorghum spp.] in four replicated small plot field experiments from 2009 to 2012. A relative resistance ratio was developed to compare levels of susceptibility among cultivars based on the percentage of bored internodes and survival to adulthood. This index was able to separate cultivars into five resistance categories and provides a new method for comparing levels of resistance among cultivars. E. loftini pest pressure in 2009 was among the highest recorded with injury ranging from 55 to 88% bored internodes. Commercial sugarcane cultivar HoCP 85-845 was identified as resistant in three of four experiments, whereas HoCP 04-838 was identified as susceptible in all experiments. Of the five sugarcane cultivars in commercial production in the Rio Grande Valley of Texas, only TCP 87-3388 was categorized as resistant. Of the cultivars with potential for bioenergy production, all of the energycane cultivars demonstrated higher levels of resistance than high-biomass and sweet sorghum cultivars. Continued evaluation of cultivar resistance to E. loftini is important to development of effective integrated pest management strategies for this pest.


Subject(s)
Herbivory , Insect Control/methods , Moths/physiology , Saccharum/physiology , Animals , Food Chain , Larva/growth & development , Larva/physiology , Moths/growth & development , Saccharum/genetics , Texas
8.
J Econ Entomol ; 108(4): 1516-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26470290

ABSTRACT

Studies done in Brazilian soybean, Glycine max (L.) Merril, in the 1970s suggested the redbanded stink bug, Piezodorus guildinii (Westwood), is principally responsible for delayed maturity in this crop. This stink bug species has recently emerged as a serious pest of soybean in the southern United States, where little is known about its association with the occurrence of delayed maturity disorder. Also, the mechanism behind stink bug-induced soybean delayed maturity remains unknown. It is believed that stink bug feeding during pod development stages results in reduced pod-seed load, causing alteration of source-sink ratio and eventually delayed maturity. To determine the P. guildinii threshold triggering delayed maturity in soybean, experiments were conducted with varying levels of P. guildinii infestation (0, 2, 4, and 8 adults per 0.3 m) during the R4 to R5 soybean growth stages. In addition, to determine if soybean delayed maturity is exclusively because of reduced pod load, experiments with different levels of mechanical pod removal (0, 25, 50, and 75%) were conducted on field-grown soybeans. P. guildinii densities up to 4 adults per 0.3 m did not trigger occurrence of delayed maturity. However, a density of 8 adults per 0.3 m produced a significant increase in the number of green leaves retained on plants at maturity (i.e., delayed maturity). There was no effect of mechanical pod removal on green leaf retention. The lack of a significant positive correlation between mechanical pod removal and green leaf retention indicates the involvement of mechanism(s) other than reduced pod load in the occurrence of soybean delayed maturity.


Subject(s)
Glycine max/growth & development , Herbivory , Heteroptera/physiology , Animals , Brazil , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL