Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811815

ABSTRACT

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Subject(s)
Axons , Granulocyte Colony-Stimulating Factor , Interleukin-4 , Mice, Inbred C57BL , Nerve Regeneration , Neutrophils , Animals , Neutrophils/immunology , Nerve Regeneration/immunology , Mice , Humans , Axons/metabolism , Axons/physiology , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Interleukin-4/metabolism , Neutrophil Activation , Spinal Cord Injuries/therapy , Spinal Cord Injuries/immunology , Spinal Cord Injuries/metabolism , Adoptive Transfer , Cytokines/metabolism , Cells, Cultured
2.
Brain Behav Immun ; 119: 919-944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718909

ABSTRACT

Neuroinflammation and accumulation of Amyloid Beta (Aß) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aß accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aß burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Mannose , Mice, Transgenic , MicroRNAs , Microglia , Nanoparticles , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , MicroRNAs/metabolism , Nanoparticles/administration & dosage , Mice , Microglia/metabolism , Microglia/drug effects , Mannose/pharmacology , Brain/metabolism , Brain/drug effects , Amyloid beta-Peptides/metabolism , Lipids , Male , Antagomirs/pharmacology , Antagomirs/administration & dosage
3.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672598

ABSTRACT

Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.

4.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464060

ABSTRACT

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

5.
Sci Adv ; 10(9): eadj3551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427741

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , Caveolae/metabolism , Caveolae/pathology , Pancreatic Neoplasms/pathology , Endocytosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Signal Transduction , Cell Line, Tumor
6.
Alzheimers Res Ther ; 16(1): 29, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38326859

ABSTRACT

Alzheimer's disease (AD) is the sixth leading cause of death in the USA. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release pro-inflammatory products such as IL-1ß which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed reduced representation bisulfite sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed promotes the generation of IL-1ß and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4 and CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-ß (Aß) and increased microglial production of IL-1ß in 5xFAD mice. Utilizing RNA-sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1ß from macrophages in response to cytosolic Aß through cleavage of downstream effector Gasdermin D (GSDMD). Therefore, here we unravel the role for CASP11 and GSDMD in the generation of IL-1ß in response to Aß and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential DNA methylation in AD microglia contributes to the progression of AD pathobiology. Thus, we identify CASP4 as a potential target for immunotherapies for the treatment and prevention of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Caspases, Initiator , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , DNA Methylation , Inflammation/pathology , Mice, Transgenic , Microglia/metabolism , Caspases, Initiator/metabolism
7.
Res Sq ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260305

ABSTRACT

Introduction: Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors such as inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels. In this context, microRNAs (miRNAs) have emerged as a promising biomarker, demonstrating potential as biomarkers across various diseases, including cancer, cardiovascular conditions, and neurological disorders. These circulating miRNAs embody a wide spectrum of pathophysiological processes, encompassing cell death, inflammation, angiogenesis, neuroprotection, brain plasticity, and blood-brain barrier integrity. This pilot study explores the utility of circulating exosome-enriched extracellular vesicle (EV) miRNAs as potential biomarkers for anterior circulation LVO (acLVO) stroke. Methods: In our longitudinal prospective cohort study, we collected data from acute large vessel occlusion (acLVO) stroke patients at four critical time intervals post-symptom onset: 0-6 hours, 6-12 hours, 12-24 hours, and 5-7 days. For comparative analysis, healthy individuals were included as control subjects. In this study, extracellular vesicles (EVs) were isolated from the plasma of participants, and the miRNAs within these EVs were profiled utilizing the NanoString nCounter system. Complementing this, a scoping review was conducted to examine the roles of specific miRNAs such as miR-140-5p, miR-210-3p, and miR-7-5p in acute ischemic stroke (AIS). This review involved a targeted PubMed search to assess their influence on crucial pathophysiological pathways in AIS, and their potential applications in diagnosis, treatment, and prognosis. The review also included an assessment of additional miRNAs linked to stroke. Results: Within the first 6 hours of symptom onset, three specific miRNAs (miR-7-5p, miR-140-5p, and miR-210-3p) exhibited significant differential expression compared to other time points and healthy controls. These miRNAs have previously been associated with neuroprotection, cellular stress responses, and tissue damage, suggesting their potential as early markers of acute ischemic stroke. Conclusion: This study highlights the potential of circulating miRNAs as blood-based biomarkers for hyperacute acLVO ischemic stroke. However, further validation in a larger, risk-matched cohort is required. Additionally, investigations are needed to assess the prognostic relevance of these miRNAs by linking their expression profiles with radiological and functional outcomes.

8.
Clin Infect Dis ; 78(1): 24-26, 2024 01 25.
Article in English | MEDLINE | ID: mdl-37536269

ABSTRACT

Antimicrobial use data reported to the National Healthcare Safety Network's Antimicrobial Use and Resistance Module between January 2019 and July 2022 were analyzed to assess the impact of the COVID-19 pandemic on inpatient antimicrobial use.


Subject(s)
Anti-Infective Agents , COVID-19 , United States/epidemiology , Humans , Anti-Bacterial Agents/therapeutic use , Inpatients , Pandemics
9.
Blood Adv ; 8(5): 1209-1219, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38127279

ABSTRACT

ABSTRACT: During the COVID-19 pandemic, ibrutinib with or without rituximab was approved in England for initial treatment of mantle cell lymphoma (MCL) instead of immunochemotherapy. Because limited data are available in this setting, we conducted an observational cohort study evaluating safety and efficacy. Adults receiving ibrutinib with or without rituximab for untreated MCL were evaluated for treatment toxicity, response, and survival, including outcomes in high-risk MCL (TP53 mutation/deletion/p53 overexpression, blastoid/pleomorphic, or Ki67 ≥ 30%). A total of 149 patients from 43 participating centers were enrolled: 74.1% male, median age 75 years, 75.2% Eastern Cooperative Oncology Group status of 0 to 1, 36.2% high-risk, and 8.9% autologous transplant candidates. All patients received ≥1 cycle ibrutinib (median, 8 cycles), 39.0% with rituximab. Grade ≥3 toxicity occurred in 20.3%, and 33.8% required dose reductions/delays. At 15.6-month median follow-up, 41.6% discontinued ibrutinib, 8.1% due to toxicity. Of 104 response-assessed patients, overall (ORR) and complete response (CR) rates were 71.2% and 20.2%, respectively. ORR was 77.3% (low risk) vs 59.0% (high risk) (P = .05) and 78.7% (ibrutinib-rituximab) vs 64.9% (ibrutinib; P = .13). Median progression-free survival (PFS) was 26.0 months (all patients); 13.7 months (high risk) vs not reached (NR) (low risk; hazard ratio [HR], 2.19; P = .004). Median overall survival was NR (all); 14.8 months (high risk) vs NR (low risk; HR, 2.36; P = .005). Median post-ibrutinib survival was 1.4 months, longer in 41.9% patients receiving subsequent treatment (median, 8.6 vs 0.6 months; HR, 0.36; P = .002). Ibrutinib with or without rituximab was effective and well tolerated as first-line treatment of MCL, including older and transplant-ineligible patients. PFS and OS were significantly inferior in one-third of patients with high-risk disease and those unsuitable for post-ibrutinib treatment, highlighting the need for novel approaches in these groups.


Subject(s)
Adenine , Lymphoma, Mantle-Cell , Piperidines , Adult , Aged , Female , Humans , Male , Adenine/analogs & derivatives , Cohort Studies , England , Lymphoma, Mantle-Cell/drug therapy , Rituximab/therapeutic use
10.
Sci Transl Med ; 15(727): eadh2156, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117902

ABSTRACT

An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.


Subject(s)
Glucocorticoids , Spinal Cord Injuries , Mice , Animals , Spinal Cord Injuries/pathology , Muscle, Skeletal/metabolism , Spinal Cord/metabolism
11.
Res Sq ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37961609

ABSTRACT

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration, and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke, and other neurological disorders. Here we demonstrate that both mouse and human bone marrow (BM) neutrophils, when polarized with a combination of recombinant interleukin (IL)-4 and granulocyte-colony stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF polarized BM neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.

12.
Article in English | MEDLINE | ID: mdl-38028914

ABSTRACT

Through the Centers for Medicare and Medicaid Services Promoting Interoperability Program, more hospitals will be reporting to the National Healthcare Safety Network Antimicrobial Use (AU) Option. We highlight the next steps and opportunities for measurement of AU to optimize prescribing.

13.
Gut Microbes ; 15(2): 2255345, 2023 12.
Article in English | MEDLINE | ID: mdl-37702461

ABSTRACT

Despite improved cardiometabolic outcomes following bariatric surgery, its long-term impact on colorectal cancer (CRC) risk remains uncertain. In parallel, the influence of bariatric surgery on the host microbiome and relationships with disease outcomes is beginning to be appreciated. Therefore, we investigated the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on the patterns of sulfide-reducing and butyrate-producing bacteria, which are hypothesized to modulate CRC risk after bariatric surgery. In this single-center, cross-sectional study, we included 15 pre-surgery subjects with severe obesity and patients who are at a median (range) of 25.6 (9.9-46.5) months after RYGB (n = 16) or VSG (n = 10). The DNA abundance of fecal bacteria and enzymes involved in butyrate and sulfide metabolism were identified using metagenomic sequencing. Differences between pre-surgery and post-RYGB or post-VSG cohorts were quantified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Our sample was predominantly female (87%) with a median (range) age of 46 (23-71) years. Post-RYGB and post-VSG patients had a higher DNA abundance of fecal sulfide-reducing bacteria than pre-surgery controls (LDA = 1.3-4.4, p < .05). The most significant enrichments were for fecal E. coli, Acidaminococcus and A. finegoldii after RYGB, and for A. finegoldii, S. vestibularis, V. parvula after VSG. As for butyrate-producing bacteria, R. faecis was more abundant, whereas B. dentium and A. hardus were lower post-RYGB vs. pre-surgery. B. dentium was also lower in post-VSG vs. pre-surgery. Consistent with these findings, our analysis showed a greater enrichment of sulfide-reducing enzymes after bariatric surgery, especially RYGB, vs. pre-surgery. The DNA abundance of butyrate-producing enzymes was lower post-RYGB. In conclusion, the two most used bariatric surgeries, RYGB and VSG, are associated with microbiome patterns that are potentially implicated in CRC risk. Future studies are needed to validate and understand the impact of these microbiome changes on CRC risk after bariatric surgery.


Subject(s)
Bariatric Surgery , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Female , Middle Aged , Aged , Male , Butyrates , Cross-Sectional Studies , Escherichia coli , Bacteria/genetics , Colorectal Neoplasms/surgery
14.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693600

ABSTRACT

Alzheimer's Disease (AD) is the 6th leading cause of death in the US. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release proinflammatory products such as IL-1ß which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed Reduced Representation Bisulfite Sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed, can be involved in generation of IL-1ß and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4, CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-ß (Aß) and increased microglial production of IL-1ß in 5xFAD mice. Utilizing RNA sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1ß from macrophages in response to cytosolic Aß through cleavage of downstream effector Gasdermin D (G SDMD). We describe a role for CASP11 and GSDMD in the generation of IL-1ß in response to Aß and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential methylation in AD microglia contributes to the progression of AD pathobiology, thus identifying CASP4 as a potential target for immunotherapies for the treatment of AD.

15.
Cancer ; 129(24): 3971-3977, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37560930

ABSTRACT

INTRODUCTION: Increasingly, early-stage non-small cell lung cancer (NSCLC) is treated with stereotactic body radiation therapy (SBRT). Although treatment is generally effective, a small subset of tumors will recur because of radioresistance. Preclinical studies suggested PI3K-AKT-mTOR activation mediates radioresistance. This study sought to validate this finding in tumor samples from patients who underwent SBRT for NSCLC. METHODS: Patients with T1-3N0 NSCLC treated with SBRT at our institution were included. Total RNA of formalin-fixed paraffin-embedded tumor biopsy specimens (pretherapy) was isolated and analyzed using the Clariom D assay. Risk scores from a PI3K activity signature and four published NSCLC signatures were generated and dichotomized by the median. Kaplan-Meier curves and Cox regressions were used to analyze their association with recurrence and overall survival (OS). The PI3K signature was also tested in a data set of resected NSCLC for additional validation. RESULTS: A total of 92 patients were included, with a median follow-up of 18.3 months for living patients. There was no association of any of the four published gene expression signatures with recurrence or OS. However, high PI3K risk score was associated with higher local recurrence (hazard ratio [HR], 11.72; 95% CI, 1.40-98.0; p = .023) and worse disease-free survival (DFS) (HR, 3.98; 95% CI, 1.57-10.09; p = .0035), but not OS (p = .49), regional recurrence (p = .15), or distant recurrence (p = .85). In the resected NSCLC data set (n = 361), high PI3K risk score was associated with decreased OS (log-rank p = .013) but not DFS (p = 0.54). CONCLUSIONS: This study validates that higher PI3K activity, measured by gene expression, is associated with local recurrence and worse DFS in early-stage NSCLC patients treated with SBRT. This may be useful in prognostication and/or tailoring treatment, and merits further validation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Neoplasm Staging , Phosphatidylinositol 3-Kinases/genetics , Retrospective Studies , Small Cell Lung Carcinoma/pathology , Transcriptome , Treatment Outcome
16.
Biomaterials ; 301: 122245, 2023 10.
Article in English | MEDLINE | ID: mdl-37467597

ABSTRACT

Open vascular reconstructions such as bypass are common treatments for cardiovascular disease. Unfortunately, neointimal hyperplasia (IH) follows, leading to treatment failure for which there is no approved therapy. Here we combined the strengths of tailoring nanoplatforms for open vascular reconstructions and targeting new epigenetic mechanisms. We produced adhesive nanoparticles (ahNP) that could be pen-brushed and immobilized on the adventitia to sustainably release pinometostat, an inhibitor drug selective to the epigenetic writer DOT1L that catalyzes histone-3 lysine-79 dimethylation (H3K79me2). This treatment not only reduced IH by 76.8% in injured arteries mimicking open reconstructions in obese Zucker rats with human-like diseases but also avoided the shortcoming of endothelial impairment in IH management. In mechanistic studies, chromatin immunoprecipitation (ChIP) sequencing revealed co-enrichment of the histone mark H3K27ac(acetyl) and its reader BRD4 at the gene of aurora kinase B (AURKB), where H3K79me2 was also enriched as indicated by ChIP-qPCR. Accordingly, DOT1L co-immunoprecipitated with H3K27ac. Furthermore, the known IH driver BRD4 governed the expression of DOT1L which controlled AURKB's protein level, revealing a BRD4- > DOT1L- > AURKB axis. Consistently, AURKB-selective inhibition reduced IH. Thus, this study presents a prototype nanoformulation suited for open vascular reconstructions, and the new insights into chromatin modulators may aid future translational advances.


Subject(s)
Adventitia , Nuclear Proteins , Rats , Animals , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Adventitia/metabolism , Neointima/drug therapy , Transcription Factors/metabolism , Rats, Zucker , Epigenesis, Genetic , Endothelium , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Cycle Proteins/genetics
17.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37343523

ABSTRACT

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Subject(s)
Brain Neoplasms , Glioma , Child , Humans , Brain Neoplasms/genetics , Epigenome , Glioma/genetics , Glioma/pathology , Haploinsufficiency/genetics , Mutation/genetics , NF-KappaB Inhibitor alpha/genetics , Isocitrate Dehydrogenase
18.
Front Public Health ; 11: 1128768, 2023.
Article in English | MEDLINE | ID: mdl-37250069

ABSTRACT

Background: Past research has shown that Australians affected by miscarriage want a website specific to both miscarriage and their local region that is accessible, comprehensive, evidence-based and informed by experts. The aim of this study was to design, develop and evaluate the Miscarriage Australia website using human centered design. Methods: A four stage human centered design approach was used to develop the Miscarriage Australia website which aimed to: (1) Understand the issue and why users need a website; (2) Define users' specific needs; (3) Design solutions to meet those needs; and (4) Evaluate the design by testing with end users. Across the four stages, various types of data and data analysis were developed and utilized including interviews, desktop research, development of personas and tone of voice, followed by usability testing. Process and content were guided by designers, developers and an expert advisory committee of key stakeholders. Results: Analysis and synthesis of user research across Stages 1 and Stage 2 found 11 key themes pertaining to user's miscarriage experiences and support needs. Using the themes, common experiences, goals, motivations and behaviors of users were identified and similar user types grouped and used to inform the development of two personas. Using the personas and user research findings, design elements (Stage 3) including the "tone of voice guidelines" were developed recommending the Miscarriage Australia website be calm, empathetic, hopeful and authoritative. The tone of voice guidelines guided branding and over 100 pages of content was informed by the research team and reviewed by a 13-member Expert Clinical Advisory Committee over two rounds to ensure it was evidence based and reflected best practice. Using a contextual inquiry approach, usability testing was undertaken with 8 end users to test a low fidelity mockup and high-fidelity prototype of the website. Overall, end users reported the website was highly acceptable in terms of the design, content, layout, language and terminology, describing it in line with the intended tone of voice. Users reported the website was easy to use and navigate and provided useful and appropriate content and resources. Minor areas for improvement included slight changes to specific images, improved links for navigating sections, and a title change to one section heading. Conclusion: The Miscarriage Australia website was successfully implemented and commended by users as meeting their needs. As a result of using human centered design, the Miscarriage Australia website provides an ideal template or blueprint on how to develop a successful and useful digital resource for users, particularly around sensitive women's health issues.


Subject(s)
Abortion, Spontaneous , Humans , Female , Pregnancy , Australia , Universal Design
19.
Vet Comp Oncol ; 21(3): 492-502, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37254642

ABSTRACT

High-grade glioma is an aggressive cancer that occurs naturally in pet dogs. Canine high-grade glioma (cHGG) is treated with radiation, chemotherapy or surgery, but has no curative treatment. Within the past eight years, there have been advances in our imaging and histopathology standards as well as genetic charactereization of cHGG. However, there are only three cHGG cell lines publicly available, all of which were derived from astrocytoma and established using methods involving expansion of tumour cells in vitro on plastic dishes. In order to provide more clinically relevant cell lines for studying cHGG in vitro, the goal of this study was to establish cHGG patient-derived lines, whereby cancer cells are expanded in vivo by injecting cells into immunocompromized laboratory mice. The cells are then harvested from mice and used for in vitro studies. This method is the standard in the human field and has been shown to minimize the acquisition of genetic alterations and gene expression changes from the original tumour. Through a multi-institutional collaboration, we describe our methods for establishing two novel cHGG patient-derived lines, Boo-HA and Mo-HO, from a high-grade astrocytoma and a high-grade oligodendroglioma, respectively. We compare our novel lines to G06-A, J3T-Bg, and SDT-3G (traditional cHGG cell lines) in terms of proliferation and sensitivity to radiation. We also perform whole genome sequencing and identify an NF1 truncating mutation in Mo-HO. We report the characterization and availability of these novel patient-derived lines for use by the veterinary community.


Subject(s)
Astrocytoma , Brain Neoplasms , Dog Diseases , Glioma , Humans , Dogs , Animals , Mice , Glioma/genetics , Glioma/veterinary , Glioma/metabolism , Astrocytoma/genetics , Astrocytoma/veterinary , Brain Neoplasms/genetics , Brain Neoplasms/veterinary , Brain Neoplasms/pathology
20.
Am J Hematol ; 98(6): 940-950, 2023 06.
Article in English | MEDLINE | ID: mdl-37052167

ABSTRACT

The role of minor histocompatibility antigens (mHAs) in mediating graft versus leukemia and graft versus host disease (GvHD) following allogeneic hematopoietic cell transplantation (alloHCT) is recognized but not well-characterized. By implementing improved methods for mHA prediction in two large patient cohorts, this study aimed to comprehensively explore the role of mHAs in alloHCT by analyzing whether (1) the number of predicted mHAs, or (2) individual mHAs are associated with clinical outcomes. The study population consisted of 2249 donor-recipient pairs treated for acute myeloid leukemia and myelodysplastic syndrome with alloHCT. A Cox proportional hazard model showed that patients with a class I mHA count greater than the population median had an increased hazard of GvHD mortality (hazard ratio [HR] = 1.39, 95% confidence interval [CI] = 1.01, 1.77, p = .046). Competing risk analyses identified the class I mHAs DLRCKYISL (GSTP), WEHGPTSLL (CRISPLD2), and STSPTTNVL (SERPINF2) were associated with increased GVHD mortality (HR = 2.84, 95% CI = 1.52, 5.31, p = .01), decreased leukemia-free survival (LFS) (HR = 1.94, 95% CI = 1.27, 2.95, p = .044), and increased disease-related mortality (DRM) (HR = 2.32, 95% CI = 1.5, 3.6, p = .008), respectively. One class II mHA YQEIAAIPSAGRERQ (TACC2) was associated with increased risk of treatment-related mortality (TRM) (HR = 3.05, 95% CI = 1.75, 5.31, p = .02). WEHGPTSLL and STSPTTNVL were both present within HLA haplotype B*40:01-C*03:04 and showed a positive dose-response relationship with increased all-cause mortality and DRM and decreased LFS, indicating these two mHAs contribute to the risk of mortality in an additive manner. Our study reports the first large-scale investigation of the associations of predicted mHA peptides with clinical outcomes following alloHCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Minor Histocompatibility Antigens/genetics , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myeloid, Acute/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...