Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.710
Filter
1.
J Environ Sci (China) ; 147: 607-616, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003075

ABSTRACT

This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits (FG, the involatile portion of suspended solids) and fine debris (FD, the volatile yet unbiodegradable fraction of suspended solids) within the influent on the mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio of an activated sludge system. Through meticulous experimentation, it was discerned that the addition of FG or FD, the particle size of FG, and the concentration of FD bore no substantial impact on the pollutant removal efficiency (denoted by the removal rate of COD and ammonia nitrogen) under constant operational conditions. However, a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L, with smaller FG particle sizes exacerbating this reduction. Additionally, variations in FD concentrations influenced both MLSS and MLVSS/MLSS ratios; a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio, indicating FD accumulation in the system. A predictive model for MLVSS/MLSS was constructed based on quality balance calculations, offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD. This model, validated using data from the BXH wastewater treatment plant (WWTP), showcased remarkable accuracy.


Subject(s)
Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Particle Size , Water Pollutants, Chemical/analysis
2.
J Dairy Sci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154724

ABSTRACT

This study examined the effects of incorporating milk protein concentrate (MPC), pea or soy proteins isolates (PPI and SPI) on the physicochemical, sensorial properties, and amino acid composition of ice creams containing 7% protein, in comparison to dairy ice cream as a reference. As protein ingredients, PPI exhibited higher water and oil holding capacity but lower surface hydrophobicity than SPI and MPC. Viscosity of the mixes were proportional to the firmness of ice cream, and both were highest with use of PPI. MPC ice cream had most similar physical and sensory properties to reference. PPI and SPI ice cream mixes showed higher extent of fat coalescence than MPC and reference. PPI and SPI conferred structural stability to ice cream with lower melting rate and better shape retention, and ability to delay ice recrystallization during temperature flocculation as compared with SMP and MPC. Confocal laser scanning microscope images indicated that higher extent of protein aggregation and more air cells were found in PPI ice cream. Sensory and amino acid profile results revealed that PPI and SPI ice creams were inferior in taste, texture, and essential amino acids like methionine. This study offers insights for the development of high protein frozen desserts.

3.
Anal Biochem ; : 115635, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098372

ABSTRACT

In this paper, we introduced a novel phase-transfer strategy tailored for the efficient batch detection of ascorbic acid in vitamin C tablets. This method entailed the reaction between ascorbic acid and an excess of potassium permanganate. Subsequent reaction of the residual potassium permanganate with sodium oxalate in an acidic medium led to the generation of carbon dioxide. The quantification of the produced carbon dioxide was achieved using headspace GC, enabling the indirect measurement of ascorbic acid. The obtained findings revealed that the headspace method exhibited satisfied precision with a relative standard deviation of less than 2.11% and high sensitivity with a limit of quantitation of 0.27 µmol. These results firmly establish the reliability of this innovative approach for determining ascorbic acid. In addition, the highly automated feature of headspace method significantly enhances the efficiency of batch sample detection and reduces the errors caused by human operation. Thus, the adoption of the transformed phase strategy has demonstrated its effectiveness in assessing ascorbic acid, especially for large-scale sample analysis in industrial applications, owing to its efficiency, precision, and sensitivity.

4.
Sci Rep ; 14(1): 18054, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103361

ABSTRACT

In this pilot study, we investigated the utility of handheld ultrasound-guided photoacoustic (US-PA) imaging probe for analyzing ex-vivo breast specimens obtained from female patients who underwent breast-conserving surgery (BCS). We aimed to assess the potential of US-PA in detecting biochemical markers such as collagen, lipids, and hemoglobin, and compare these findings with routine imaging modalities (mammography, ultrasound) and histopathology results, particularly across various breast densities. Twelve ex-vivo breast specimens were obtained from female patients with a mean age of 59.7 ± 9.5 years who underwent BCS. The tissues were illuminated using handheld US-PA probe between 700 and 1100 nm across all margins and analyzed for collagen, lipids, and hemoglobin distribution. The obtained results were compared with routine imaging and histopathological assessments. Our findings revealed that lipid intensity and distribution decreased with increasing breast density, while collagen exhibited an opposite trend. These observations were consistent with routine imaging and histopathological analyses. Moreover, collagen intensity significantly differed (P < 0.001) between cancerous and normal breast tissue, indicating its potential as an additional biomarker for risk stratification across various breast conditions. The study results suggest that a combined assessment of PA biochemical information, such as collagen and lipid content, superimposed on grey-scale ultrasound findings could aid in distinguishing between normal and malignant breast conditions, as well as assist in BCS margin assessment. This underscores the potential of US-PA imaging as a valuable tool for enhancing breast cancer diagnosis and management, offering complementary information to existing imaging modalities and histopathology.


Subject(s)
Breast Neoplasms , Collagen , Hemoglobins , Lipids , Photoacoustic Techniques , Humans , Female , Photoacoustic Techniques/methods , Middle Aged , Hemoglobins/analysis , Hemoglobins/metabolism , Collagen/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Aged , Lipids/analysis , Lipids/chemistry , Breast/pathology , Breast/diagnostic imaging , Pilot Projects , Ultrasonography, Mammary/methods , Tomography/methods , Biomarkers
5.
Sensors (Basel) ; 24(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124070

ABSTRACT

Rehabilitation from musculoskeletal injuries focuses on reestablishing and monitoring muscle activation patterns to accurately produce force. The aim of this study is to explore the use of a novel low-powered wearable distributed Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound (SMART-US) device to predict force during an isometric squat task. Participants (N = 5) performed maximum isometric squats under two medical imaging techniques; clinical musculoskeletal motion mode (m-mode) ultrasound on the dominant vastus lateralis and SMART-US sensors placed on the rectus femoris, vastus lateralis, medial hamstring, and vastus medialis. Ultrasound features were extracted, and a linear ridge regression model was used to predict ground reaction force. The performance of ultrasound features to predict measured force was tested using either the Clinical M-mode, SMART-US sensors on the vastus lateralis (SMART-US: VL), rectus femoris (SMART-US: RF), medial hamstring (SMART-US: MH), and vastus medialis (SMART-US: VMO) or utilized all four SMART-US sensors (Distributed SMART-US). Model training showed that the Clinical M-mode and the Distributed SMART-US model were both significantly different from the SMART-US: VL, SMART-US: MH, SMART-US: RF, and SMART-US: VMO models (p < 0.05). Model validation showed that the Distributed SMART-US model had an R2 of 0.80 ± 0.04 and was significantly different from SMART-US: VL but not from the Clinical M-mode model. In conclusion, a novel wearable distributed SMART-US system can predict ground reaction force using machine learning, demonstrating the feasibility of wearable ultrasound imaging for ground reaction force estimation.


Subject(s)
Isometric Contraction , Ultrasonography , Wearable Electronic Devices , Humans , Ultrasonography/methods , Ultrasonography/instrumentation , Male , Isometric Contraction/physiology , Adult , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Female , Young Adult
6.
Zhonghua Nan Ke Xue ; 30(3): 217-223, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-39177387

ABSTRACT

OBJECTIVE: To investigate the causal correlation between depression and stress urinary incontinence (SUI) using Mendelian randomization (MR) analysis. METHODS: We searched the FinnGen Consortium database for genome-wide association studies (GWAS) on depression and obtained 23 424 case samples and 192 220 control samples, with the GWAS data on SUI provided by the UK Biobank, including 4 340 case samples and 458 670 control samples. We investigated the correlation between depression and SUI based on the depression data collected from the Psychiatric Genomics Consortium (PGC). We employed inverse-variance weighting as the main method for the MR study, and performed sensitivity analysis to verify the accuracy and stability of the findings. RESULTS: Analysis of the data from the UK Biobank and FinnGen Consortium showed that depression was significantly correlated with an increased risk of SUI (P=0.005), but not SUI with the risk of depression (P=0.927). And analysis of the PGC data verified the correlation of depression with the increased risk of SUI (P=0.043). CONCLUSION: Depression is associated with an increased risk of SUI, while SUI does not increase the risk of depression.


Subject(s)
Depression , Genome-Wide Association Study , Mendelian Randomization Analysis , Urinary Incontinence, Stress , Humans , Depression/genetics , Urinary Incontinence, Stress/genetics , Risk Factors , Polymorphism, Single Nucleotide , Female
7.
Nat Commun ; 15(1): 7144, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164296

ABSTRACT

FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Drosophila Proteins , Forkhead Transcription Factors , Longevity , Oxidative Stress , Animals , Longevity/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bombyx/genetics , Bombyx/metabolism , Bombyx/physiology , Drosophila melanogaster/genetics , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation
8.
Sci Total Environ ; 951: 175660, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168341

ABSTRACT

This study analyzed the dissolved organic matter (DOM) released by adsorbent during wastewater treatment. It was found that the adsorption method resulted in an organic removal efficiency of over 97 % for coal-to-olefin (CTO) wastewater, with the lowest value of 15.7 mg/L. The Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) detected 4111 DOM in the wastewater, 4052 remaining DOM after first-stage anthracite (ANC) adsorption, and 1013 after second-stage macroporous adsorption resin (MAR). The removal degree of lipids in wastewater was the highest, followed by aliphatic/amino-acid/mini-peptides and lignin. During the adsorption process, the proportion of halogenated compounds (HCs) declined from 59.86 % to 38.63 % and 21.67 %. Additionally, freshly produced 2035 and 311 DOMs were found in the adsorption effluent of ANC and MAR, respectively, with HCs accounting for 34.71 % and 67.96 %. Upon flowing ultra-pure water through ANC and MAR, the effluent dissolved organic carbon (DOC) ranges were 1.118-3.574 mg/L and 1.014-2.557 mg/L, respectively. There were 159 and 131 species of DOM detected, respectively, with HCs content of 59.06 % and 45.02 %. Comparative experiments revealed the complex components of the wastewater promoting the release of organic matter on the adsorbent surface that further reacted to generate organic matter. However, fewer substances were released by the adsorbent.

9.
J Agric Food Chem ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193844

ABSTRACT

Sophora flavescens, a traditional Chinese herb, produces a wide range of secondary metabolites with a broad spectrum of biological activities. In this study, we isolated six isopentenyl flavonoids (1-6) from the roots of S. flavescens and evaluated their activities against phytopathogenic fungi. In vitro activities showed that kurarinone and sophoraflavanone G displayed broad spectrum and superior activities, among which sophoraflavanone G displayed excellent activity against tested fungi, with EC50 values ranging from 4.76 to 13.94 µg/mL. Notably, kurarinone was easily purified and showed potential activity against Rhizoctonia solani, Botrytis cinerea, and Fusarium graminearum with EC50 values of 16.12, 16.55, and 16.99 µg/mL, respectively. Consequently, we initially investigated the mechanism of kurarinone against B. cinerea. It was found that kurarinone disrupted cell wall components, impaired cell membrane integrity, increased cell membrane permeability, and affected cellular energy metabolism, thereby exerting its effect against B. cinerea. Therefore, kurarinone is expected to be a potential candidate for the development of plant fungicides.

10.
Free Radic Biol Med ; 223: 263-280, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117049

ABSTRACT

Given the substantial risks associated with ultraviolet B (UVB) radiation-induced solar dermatitis, enhancing current strategies to combat UVB regarding skin diseases is imperative. The cross-talk between ferroptosis and inflammation has been proven to be an essential factor in UVB-induced solar dermatitis, whereas detailed process of how their interaction contributes to this remains unclear. Therefore, further investigation of ferroptosis-mediated processes and identification of corresponding inhibitory approaches hold promise for repairing skin damage. Senkyunolide I (Sen I), a bioactive component mainly extracted from the traditional Chinese medicinal plants, Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has demonstrated efficacy in combating oxidative stress and inflammation. In this study, we utilized UVB-irradiated HaCaT cells as an in vitro model and C57BL/6J mice as an in vivo model of solar dermatitis. Our findings revealed the pivotal roles of autophagy and ferroptosis in inducing skin inflammation, particularly emphasizing the activation of ferroptosis through macroautophagy. Surprisingly, this mechanism operated independently of ferritinophagy, a classical autophagy-driven ferroptosis pathway. Instead, our results highlighted Transferrin Receptor 1 (TfR1), tightly controlled by autophagy, as a crucial mediator of ferroptosis execution and amplifier of subsequent lethal signals. Furthermore, extracellular High Mobility Group Box 1 protein (HMGB1), released following UVB-induced ferroptotic cells from activated autophagic flux, initiated a feedback loop with TfR1, propagating ferroptosis to neighboring cells and exacerbating damage. Remarkably, Sen I administration showed a significant protective effect against UVB damage in both in vitro and in vivo models by interrupting this cascade. Consequently, we have illuminated a novel therapeutic pathway post-UVB exposure and identified Sen I as a potent natural molecule that safeguarded against UVB-induced solar dermatitis by suppressing the autophagy-ferroptosis-HMGB1-TfR1 axis, highlighting a new frontier in photoprotection.

11.
Nutr J ; 23(1): 91, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138490

ABSTRACT

BACKGROUND: Dietary diversity has been suggested as a potential preventive measure against frailty in older adults, but the effect of changes in dietary diversity on frailty is unclear. This study was conducted to examine the association between the dietary diversity score (DDS) and frailty among older Chinese adults. METHODS: A total of 12,457 adults aged 65 years or older were enrolled from three consecutive and nonoverlapping cohorts from the Chinese Longitudinal Healthy Longevity Survey (the 2002 cohort, the 2005 cohort, and the 2008 cohort). DDS was calculated based on nine predefined food groups, and DDS changes were assessed by comparing scores at baseline and the first follow-up survey. We used 39 self-reported health items to assess frailty. Cox proportional hazard models were performed to examine the association between DDS change patterns and frailty. RESULTS: Participants with low-to-low DDS had the highest frailty incidence (111.1/1000 person-years), while high-to-high DDS had the lowest (41.1/1000 person-years). Compared to the high-to-high group of overall DDS pattern, participants in other DDS change patterns had a higher risk of frailty (HRs ranged from 1.25 to 2.15). Similar associations were observed for plant-based and animal-based DDS. Compared to stable DDS changes, participants with an extreme decline in DDS had an increased risk of frailty, with HRs of 1.38 (1.24, 1.53), 1.31 (1.19, 1.44), and 1.29 (1.16, 1.43) for overall, plant-based, and animal-based DDS, respectively. CONCLUSIONS: Maintaining a lower DDS or having a large reduction in DDS was associated with a higher risk of frailty among Chinese older adults. These findings highlight the importance of improving a diverse diet across old age for preventing frailty in later life.


Subject(s)
Diet , Frailty , Humans , Aged , Female , Male , Frailty/epidemiology , China/epidemiology , Diet/statistics & numerical data , Diet/methods , Cohort Studies , Frail Elderly/statistics & numerical data , Longitudinal Studies , Aged, 80 and over , Asian People/statistics & numerical data , Proportional Hazards Models , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , East Asian People
12.
ACS Chem Biol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163642

ABSTRACT

Microcin J25 (MccJ25), a lasso peptide antibiotic with a unique structure that resembles the lariat knot, has been a topic of intense interest since its discovery in 1992. The precursor (McjA) contains a leader and a core segment. McjB is a protease activated upon binding to the leader, and McjC converts the core segment into the mature MccJ25. Previous studies suggested that these biosynthetic steps likely proceed in a (nearly) concerted fashion; however, there is only limited information regarding the structural and molecular intricacies of MccJ25 biosynthesis. To close this knowledge gap, we used AlphaFold2 to predict the structure of the precursor (McjA) in complex with its biosynthetic enzymes (McjB and McjC) and queried the critical predicted features by protein engineering. Based on the predicted structure, we designed protein variants to show that McjB can still be functional and form a proficient biosynthetic complex with McjC when its recognition and protease domains were circularly permutated or split into separate proteins. Specific residues important for McjA recognition were also identified, which permitted us to pinpoint a compensatory mutation (McjBM108T) to restore McjA/McjB interaction that rescued an otherwise nearly nonproductive precursor variant (McjAT-2M). Studies of McjA, McjB, and McjC have long been mired by them being extremely difficult to handle experimentally, and our results suggest that the AF2 predicted ternary complex structure may serve as a reasonable starting point for understanding MccJ25 biosynthesis. The prediction-validation workflow presented herein combined artificial intelligence and laboratory experiments constructively to gain new insights.

13.
Waste Manag ; 189: 77-87, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180805

ABSTRACT

Hydrochar is proposed as a climate-friendly organic fertilizer, but its potential impact on greenhouse gas (GHG) emissions in paddy cultivation is not fully understood. This two-year study compared the impact of exogenous organic carbon (EOC) application (rice straw and hydrochar) on GHG emissions, the net ecosystem carbon budget (NECB), net global warming potential (net GWP), and GHG emission intensity (GHGI) in a rice pot experiment using either flooding irrigation (FI) or controlled irrigation (CI). Compared with FI, CI increased ecosystem respiration by 23 - 44 % and N2O emissions by 85 - 137 % but decreased CH4 emissions by 30 - 58 % (p < 0.05). Since CH4 contributed more to net GWP than N2O, CI reduced net GWP by 16 - 220 %. EOC amendment increased crop yield by 5 - 9 % (p < 0.05). Compared with CK, hydrochar application increased initial GHG emission, net GWP and GHGI in the first year, while in the second year, there was no significant difference in net GWP and GHGI between CI-hydrochar and CK. Compared with straw addition, hydrochar amendment reduced net GWP and GHGI by 20 - 66 % and 21 - 66 %; and exhibited a lower net CO2 emission when considering the energy input during the hydrochar production. These findings suggest that integrated CI-hydrochar practices would be a sustainable and eco-friendly way for organic waste management in rice production as it holds potential to enhance the NECB and SOC sequestration of rice production, while also offsetting the extra carbon emissions from organic inputs.

14.
ACS Nano ; 18(34): 23289-23300, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39151414

ABSTRACT

mRNA vaccines have been revolutionizing disease prevention and treatment. However, their further application is hindered by inflammatory side effects, primarily caused by delivery systems such as lipid nanoparticles (LNPs). In response to this issue, we prepared cationic lipids (mLPs) derived from mildronate, a small-molecule drug, and subsequently developed the LNP (mLNP-69) comprising a low dose of mLP. Compared with the LNP (sLNP) based on SM-102, a commercially available ionizable lipid, mLNP-69 ensures effective mRNA delivery while significantly reducing local inflammation. In preclinical prophylactic and therapeutic B16-OVA melanoma models, mLNP-69 demonstrated successful mRNA cancer vaccine delivery in vivo, effectively preventing tumor occurrence or impeding tumor progression. The results suggest that the cationic lipids derived from mildronate, which exhibit efficient delivery capabilities and minimal inflammatory side effects, hold great promise for clinical application.


Subject(s)
Inflammation , Lipids , Animals , Mice , Lipids/chemistry , Inflammation/prevention & control , Nanoparticles/chemistry , Mice, Inbred C57BL , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/chemistry , mRNA Vaccines , RNA, Messenger/genetics , Female , Melanoma, Experimental/pathology
15.
Huan Jing Ke Xue ; 45(7): 4228-4240, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022969

ABSTRACT

In order to elucidate the changes in the soil fungal community and soil organic carbon components of a Jasminum sambac garden after straw and biochar application, we measured the organic carbon components and soil fungal community of the 0-15 cm soil layer in a J. sambac garden, which was divided into a control group, straw treatment group, and biochar treatment group. The carbon pool management index (CPMI) was also calculated. The results showed that the diversity of the soil fungal community was decreased after straw and biochar application, and the structure of dominant fungal genera was changed in each treatment. The soil fungal community structure in the biochar treatment was significantly different from that in the straw treatment and control groups. Redundancy analysis (RDA) showed that soil fungal community structure was mainly affected by soil bulk density, C∶N, salinity, and TN. Secondly, compared with that in the control group, soil labile organic carbon (LOC) in the straw treatment group was significantly increased by 87.44% (P<0.05), whereas soil dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in the biochar treatment group were significantly increased by 22.27% and 23.17% (P<0.05), respectively. Further, compared with that in the control group, the carbon pool activity (L) under straw treatment was significantly increased (P<0.05), and the carbon pool index (CPI) under biochar treatment was significantly increased (P<0.05). Spearman correlation analysis showed that the distribution characteristics of soil organic carbon active components were regulated by the dominant fungi. FUNGuild functional prediction results showed that saprophytic and its facultative nutritional fungi had an important impact on soil organic carbon active components and carbon pool management index after straw and biochar application.


Subject(s)
Carbon , Charcoal , Fungi , Organic Chemicals , Plant Stems , Soil Microbiology , Soil , Charcoal/chemistry , Fungi/metabolism , Soil/chemistry , Plant Stems/chemistry , Plant Stems/metabolism , Fertilizers
16.
Data Brief ; 55: 110673, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39049967

ABSTRACT

Human Activity Recognition (HAR) has emerged as a critical research area due to its extensive applications in various real-world domains. Numerous CSI-based datasets have been established to support the development and evaluation of advanced HAR algorithms. However, existing CSI-based HAR datasets are frequently limited by a dearth of complexity and diversity in the activities represented, hindering the design of robust HAR models. These limitations typically manifest as a narrow focus on a limited range of activities or the exclusion of factors influencing real-world CSI measurements. Consequently, the scarcity of diverse training data can impede the development of efficient HAR systems. To address the limitations of existing datasets, this paper introduces a novel dataset that captures spatial diversity through multiple transceiver orientations over a high dimensional space encompassing a large number of subcarriers. The dataset incorporates a wider range of real-world factors including extensive activity range, a spectrum of human movements (encompassing both micro-and macro-movements), variations in body composition, and diverse environmental conditions (noise and interference). The experiment is performed in a controlled laboratory environment with dimensions of 5 m (width) × 8 m (length) × 3 m (height) to capture CSI measurements for various human activities. Four ESP32-S3-DevKitC-1 devices, configured as transceiver pairs with unique Media Access Control (MAC) addresses, collect CSI data according to the Wi-Fi IEEE 802.11n standard. Mounted on tripods at a height of 1.5 m, the transmitter devices (powered by external power banks) positioned at north and east send multiple Wi-Fi beacons to their respective receivers (connected to laptops via USB for data collection) located at south and west. To capture multi-perspective CSI data, all six participants sequentially performed designated activities while standing in the centre of the tripod arrangement for 5 s per sample. The system collected approximately 300-450 packets per sample for approximately 1200 samples per activity, capturing CSI information across the 166 subcarriers employed in the Wi-Fi IEEE 802.11n standard. By leveraging the richness of this dataset, HAR researchers can develop more robust and generalizable CSI-based HAR models. Compared to traditional HAR approaches, these CSI-based models hold the promise of significantly enhanced accuracy and robustness when deployed in real-world scenarios. This stems from their ability to capture the nuanced dynamics of human movement through the analysis of wireless channel characteristic from different spatial variations (utilizing two-diagonal ESP32 transceivers configuration) with higher degree of dimensionality (166 subcarriers).

17.
BMC Plant Biol ; 24(1): 665, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997669

ABSTRACT

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.


Subject(s)
Arabidopsis , Gene Targeting , Arabidopsis/genetics , Gene Targeting/methods , Transformation, Genetic , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Plants, Genetically Modified/genetics
18.
Clin Exp Med ; 24(1): 162, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026109

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Immunotherapy/methods , Biomarkers, Tumor/analysis , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry
19.
J Hazard Mater ; 477: 135337, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067299

ABSTRACT

Transition metals are promising catalysts for environmental remediation. However, their low reactivity, poor stability and weak reusability largely limit practical applications. Herein, we report that the electron-rich dissolved black carbon (DBC) incorporated into the nanoscale zero-valent copper (nZVCu) can boost intrinsic reactivity, structural stability and cyclic reusability for superior peroxymonosulfate (PMS) activation and pollutant degradation. A series of refractory pollutants can be effectively removed on the DBC/nZVCu, in comparison with the nZVCu reference. Hydroxyl radical (‧OH) is identified as the dominant reactive oxygen species by electron spin resonance (ESR) and chemical quenching tests, mediated by the metastable Cu(III) as the key reactive intermediate. The electron-rich DBC protects nanoscale Cu from oxidative corrosion to slow down the surface formation of inert CuO layer, rendered by the thermodynamically and dynamically capacitive regulation of corrosive electron transfer from metallic core. By this refining way, the conducive DBC improves the neighboring utilization of reactive electron during metal corrosion, oxidant activation, radical generation and pollutant degradation in Fenton-like catalysis. Our findings suggest that the ubiquitous DBC can be an efficient chelating agent to refine transition metals by serving as the surface deactivator and electron mediator, and take new insights into their environmental and agricultural geochemistry.

20.
Nat Commun ; 15(1): 5818, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987265

ABSTRACT

A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.


Subject(s)
Asthma , Cell Cycle Proteins , Epithelial Cells , Ferroptosis , Membrane Transport Proteins , Mitochondria , Mitophagy , Phenotype , Transcription Factor TFIIIA , Humans , Mitochondria/metabolism , Asthma/metabolism , Asthma/pathology , Epithelial Cells/metabolism , Membrane Transport Proteins/metabolism , Transcription Factor TFIIIA/metabolism , Transcription Factor TFIIIA/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Protein Kinases/metabolism , Female , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Lipid Peroxidation , Mice , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL