Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.225
Filter
1.
Heliyon ; 10(15): e35091, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170354

ABSTRACT

The effect of hot isostatic pressing (HIP) on the microstructure and properties of hot dip aluminum coating cooled in a magnetic field was investigated in this study. In order to improve the microstructure and properties of magnetic dip aluminum coating, hot isostatic pressing technology was used for post-treatment. Initially, a traditional aluminum-impregnated coating was prepared on the surface of titanium alloy TA15, an alternating electromagnetic field was applied during the forming and solidification process of the coating. Finally, the coating was treated with hot isostatic pressing technology. Analyzed three different coatings of the microstructure and element distribution, and tested the microhardness of the coatings at various positions. The test results revealed that the TA15 titanium alloy hot-dip aluminum coatings obtained through the three different processes exhibited a gradient structure. Compared with the traditional hot-dipped aluminum air-cooled coating, when an appropriate intensity of alternating electromagnetic field was applied during the coating solidification process, the outer coating structure was enhanced, the number of holes was reduced, the microstructure density increased, and the number of cracks significantly decreased. The defects of the 800 °C hot isostatic magnetic cold and hot dip aluminum coating were repaired under high temperature and pressure, resulting in a uniform and fine microstructure. The comprehensive properties of the magnetic cold and hot dip aluminum coating on the surface of the titanium alloy were effectively enhanced through hot isostatic pressing.

2.
Osteoporos Int ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120624

ABSTRACT

Identifying dysregulated plasma proteins in osteoporosis (OP) progression offers insights into prevention and treatment. This study found 8 such proteins associated with OP, suggesting them as therapy targets. This discovery may cut drug development costs and improve personalized treatments. PURPOSE: This study aims to identify potential therapeutic targets for OP using summary data-based Mendelian randomization (SMR) and colocalization analysis methods. Furthermore, we seek to explore the biological significance and pharmacological value of these drug targets. METHODS: To identify potential therapeutic targets for OP, we conducted SMR and colocalization analysis. Plasma protein (pQTL, exposure) data were sourced from the study by Ferkingstad et al. (n = 35,559). Summary statistics for bone mineral density (BMD, outcome) were obtained from the GWAS Catalog (n = 56,284). Additionally, we utilized enrichment analysis, protein-protein interaction (PPI) network analysis, drug prediction, and molecular docking to further analyze the biological significance and pharmacological value of these drug targets. RESULTS: In the SMR analysis, while 20 proteins showed significance, only 8 potential drug targets (GCKR, ERBB3, CFHR1, GPN1, SDF2, VTN, BET1L, and SERPING1) received support from colocalization (PP.H4 > 0.8). These proteins are closely associated with immune function in terms of biological significance. Molecular docking also demonstrated favorable binding of drugs to proteins, consistent with existing structural data, further substantiating the pharmacological value of these targets. CONCLUSIONS: The study identified 8 potential drug targets for OP. These prospective targets are believed to have a higher chance of success in clinical trials, thus aiding in prioritizing OP drug development and reducing development costs.

3.
Sci Rep ; 14(1): 17845, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090173

ABSTRACT

The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.


Subject(s)
Cognition , Dopamine Plasma Membrane Transport Proteins , Dopamine , Glial Cell Line-Derived Neurotrophic Factor , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glycosylation , Dopamine Plasma Membrane Transport Proteins/metabolism , Mice , Cognition/drug effects , Dopamine/metabolism , Male , Parkinson Disease/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Cell Membrane/metabolism , Prefrontal Cortex/metabolism
4.
Zhongguo Gu Shang ; 37(7): 734-42, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39104078

ABSTRACT

The study of TCM manipulation's mechanism is the key scientific issue in the current manipulation research. It is the key and difficult point on the road of modernization and internationalization of Chinese orthopedics and traumatology. Meanwhile, it is also an important way to clarify systematically the scientific connotation of TCM manipulation. At present, our country is in an important period when multi-disciplinary intersection lead knowledge production, scientific innovation, and discipline development. The trend of cross-innovation between Chinese orthopedics and traumatology and other disciplines provides the carrier and method for the study of TCM manipulation's mechanism. Cervical spondylosis is the traditional dominant disease of Chinese orthopedics and traumatology. In recent years, many scholars have applied multi-disciplinary techniques and theories to explore the mechanism of TCM manipulation by focusing on the four dimensions of muscle, bone, blood vessel and nerve. The article takes the treatment of cervical spondylosis by TCM manipulation as the research entry point, and integrates the application status and implementation strategies of various techniques and theories under the background of multi-disciplinary intersection, which is conducive to the better combination, innovation and transformation of Chinese orthopedics and traumatology with other disciplines, and provides ideas and references for systematically clarifying the scientific connotation of TCM manipulation.


Subject(s)
Medicine, Chinese Traditional , Spondylosis , Humans , Spondylosis/therapy
5.
Front Plant Sci ; 15: 1432166, 2024.
Article in English | MEDLINE | ID: mdl-39135650

ABSTRACT

Parthenocarpy is an important way for seedless fruit production in citrus. However, the molecular mechanism(s) of parthenocarpy in pomelo is still unknown. Our initial study found significantly different parthenocarpic abilities in Guanximiyou (G) and Shatianyou (S) pomelo following emasculation, and an endogenous hormone content assay revealed that indole-3-acetic acid (IAA), gibberellic acid (GA3) and zeatin (ZT) jointly promoted fruit expansion and cell division in parthenocarpic pomelo (G pomelo). To unravel the underlying molecular mechanism(s), we conducted the first transcriptome analysis on the two pomelo accessions at these two critical stages: the fruit initiation stage and the rapid expansion stage, in order to identify genes associated with parthenocarpy. This analysis yielded approximately 7.86 Gb of high-quality reads, and the subsequent de novo assembly resulted in the identification of 5,792 DEGs (Differentially Expressed Genes). Among these, a range of transcription factor families such as CgERF, CgC2H2, CgbHLH, CgNAC and CgMYB, along with genes like CgLAX2, CgGH3.6 and CgGH3, emerged as potential candidates contributing to pomelo parthenocarpy, as confirmed by qRT-PCR analysis. The present study provides comprehensive transcriptomic profiles of both parthenocarpic and non-parthenocarpic pomelos, reveals several metabolic pathways linked to parthenocarpy, and highlights the significant role of plant hormones in its regulation. These findings deepen our understanding of the molecular mechanisms underlying parthenocarpy in pomelo.

6.
ISA Trans ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39127555

ABSTRACT

The increasing role of unmanned aerial vehicle (UAV) swarms in modern warfare poses a significant challenge to ground and air defense systems. Considering complex terrain environments and multi-sensor resources including radar and photoelectric systems constraints, a novel multi-sensor dynamic scheduling algorithm is proposed in this paper. Firstly, a transmission model with Fresnel zone under complex terrain and sensor models for radar/photoelectric systems are established. Considering the constraints of 6 factors, such as pitch angle, array scanning angle and threat levels, a detection model is developed subsequently. Secondly, to meet the real-time requirements of ground and air defense systems, a fast calculation method for Fresnel zone clearance using adaptive buffer is achieved. Thirdly, an improved Hungarian algorithm is proposed to solve the combinatorial optimization problem of sensor scheduling. Finally, simulation experiments are conducted to evaluate the algorithm performance under different conditions. The results demonstrate that the proposed approach significantly reduces the sensor switching rate while achieving a high sensor-UAV matching rate and high-threat matching rate. Furthermore, the simulation results verify the effectiveness of the proposed algorithm when applied to multi-sensor scheduling for defending UAV swarms.

7.
Sci Rep ; 14(1): 18303, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112536

ABSTRACT

To investigate the fractal characteristics of rock crack distributions during the loading process, discrete element method was used to make rock samples with joints and record the crack propagation. The Box-counting method was used to quantitatively analyze the fractal dimension of the crack distribution at each moment, and the relationship between the crack fractal dimension and strain ratio was established based on fractal theory. The results indicated that the relationship between the fractal dimension of the crack distribution and strain ratio showed a strong linear characteristic. By transforming this linear relationship into a linear function, the slope of the function was found to be linked to the failure patterns of the sample, and a refinement coefficient (damage-fracture reduction factor) was identified from the slope as an effective basis for determining the degree of sample damage and fracture. The damage-fracture reduction factor can be categorized: 0.25-0.5 (spilt and fracture), 0.5-0.9 (synergy between fracture and damage), 0.9-1 (microcrack asymptotic damage). Owing to the linear fractal characteristics, an expression for the damage variables influenced by failure patterns can be established from the geometric aspect. In addition, the linear fractal characteristics of the cracks were verified in other acoustic emission and crack extension experiments.

8.
Biomed Pharmacother ; 178: 117203, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067163

ABSTRACT

Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.

9.
Pathogens ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39057785

ABSTRACT

We aimed to investigate the species composition of a small mammal community and the prevalence of Echinococcus spp. in a typical endemic area of the Tibetan Plateau. One pika and five rodent species were identified based on the morphological characteristics of 1278 small mammal specimens collected during 2014-2019. Detection of Echinococcus DNA in tissue samples from small mammal specimens revealed that Ochotona curzoniae (pika, total prevalence: 6.02%, 26/432), Neodon fuscus (5.91%, 38/643), N. leucurus (2.50%, 3/120), and Alexandromys limnophilus (21.74%, 10/46) were infected by both E. multilocularis and E. shiquicus; Cricetulus longicaudatus (16.67%, 1/6) was infected by E. shiquicus; and no infection was detected in N. irene (0/15). Neodon fuscus and O. curzoniae were the two most abundant small mammal species. There was no significant difference in the prevalence of pika and the overall rodent species assemblage (6.26%, 53/846); however, the larger rodent populations suggested that more attention should be paid to their role in the transmission of echinococcosis in the wildlife reservoir, which has long been underestimated. Moreover, although DNA barcoding provides a more efficient method than traditional morphological methods for identifying large numbers of small mammal samples, commonly used barcodes failed to distinguish the three Neodon species in this study. The close genetic relationships between these species suggest the need to develop more powerful molecular taxonomic tools.

10.
Sci Rep ; 14(1): 16726, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030345

ABSTRACT

This research delves into the transfer and loss of energy in a discrete mass when subjected to forced vibration. Using discrete element method (DEM), we analyzed the dynamic behavior of regular spherical granular assemblies and the energy distribution characteristics under different excitation frequencies and reduced accelerations. Moreover, the energy transfer and dissipation process of granular assemblies under different vibration states are studied using an experimental method. The results show that the granular assemblies will produce collision energy dissipation, thermal energy dissipation, acoustic energy dissipation and other forms of energy dissipation in the forced vibration state and the proportion of different energy dissipation under different excitation is given. The collision and friction of granular assemblies are the key to affecting other forms of energy dissipation. When the excitation increases, the energy dissipation forms are generated inside the granular assemblies, and the proportion of collision energy dissipation of the granular assemblies increases. The acoustic energy above 20 kHz occupies the main part of the acoustic energy dissipation. Thermal energy consumption always exists, which takes a long time to play a role. The granular also have other forms of energy loss, which is hard to be measured, including Rayleigh waves generated by granular collision. In this study, the relationship between the forced vibration state of the granular assemblies and the energy loss distribution is established. Various types of energy transfer and conversion distribution which further enriches the energy dissipation of discrete element calculation of the granular assemblies is discussed and provides a reference for the energy loss analysis of the granular assemblies.

11.
Sci Rep ; 14(1): 16509, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019936

ABSTRACT

The negative effects of obesity and excess body fat on bone mineral density (BMD) have been widely reported. As opposed to waist circumference (WC) or body mass index (BMI), weight-adjusted waist index (WWI) is a superior method for assessing obesity. WWI also indicates centripetal obesity independently of the weight of the individual. An investigation of WWI and adolescents' BMD was conducted in this study. The National Health and Nutrition Examination Survey (NHANES) 2011-2018 provided the data for this cross-sectional investigation. In this study, weighted multivariate logit models were employed to assess the correlation between teenage BMD and WWI. Additionally, we conducted interaction tests and subgroup analysis. Through multivariate linear regression, we discovered that WWI was negatively linked with lumbar, trunk, and total BMD but not pelvis BMD in this study, which included 6828 subjects. We found that each unit increase in WWI resulted in a lumbar BMD decline of 0.04 g/cm2 (95%CI -0.04, -0.04), a trunk BMD decrease of 0.03 g/cm2 (95%CI -0.03, -0.02), and a total BMD decrease of 0.02 g/cm2 (95%CI -0.02, -0.02). In conclusion, in US teenagers, there were negative connections discovered between WWI and lumbar, trunk, and total BMD, but not pelvis BMD.


Subject(s)
Bone Density , Nutrition Surveys , Waist Circumference , Humans , Adolescent , Male , Female , Cross-Sectional Studies , Body Mass Index , Body Weight , Obesity/physiopathology , Lumbar Vertebrae/diagnostic imaging
12.
Langmuir ; 40(26): 13446-13457, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38877986

ABSTRACT

Efficient charge carrier transport characteristics are critical to achieving the excellent performance of metal-oxide semiconductor gas sensors. Herein, SnO2/CeO2 heterojunction layered nanosheets with abundant oxygen vacancies were successfully synthesized through a simple solvothermal assisted high-temperature calcination method. The synergistic effect of oxygen vacancies and heterojunctions promoting the charge carrier transport properties at the SnO2/CeO2 interface for the enhanced sensing properties of triethylamine (TEA) was highlighted. As a result, the optimized SnO2/CeO2 exhibits improved gas sensing performance at 173 °C to 50 ppm of TEA. These include high response (205), excellent selectivity, low detection limit, and good long-term stability. This enhanced gas sensing property of SnO2/CeO2 is mainly attributed to the fact that the heterojunction and oxygen vacancies act as dual active sites synergistically inducing electron transfer, thereby effectively modulating the transport properties of the interfacial charge carriers, and thus facilitate the surface reactions efficiently. In this work, the dual-engineering strategy of synergistic interaction of heterojunction and oxygen vacancies can provide new perspectives for the design of advanced gas sensing materials.

13.
Am J Chin Med ; 52(4): 949-986, 2024.
Article in English | MEDLINE | ID: mdl-38879748

ABSTRACT

Osteoporosis (OP) represents a substantial public health issue and is associated with increasing rates of morbidity and mortality. It is characterized by reduced bone mineral density, deterioration of bone tissue quality, disruption of the microarchitecture of bones, and compromised bone strength. These changes may be attributed to the following factors: intercellular communication between osteoblasts and osteoclasts; imbalanced bone remodeling; imbalances between osteogenesis and adipogenesis; imbalances in hormonal regulation; angiogenesis; chronic inflammation; oxidative stress; and intestinal microbiota imbalances. Treating a single aspect of the disease is insufficient to address its multifaceted nature. In recent decades, traditional Chinese medicine (TCM) has shown great potential in the treatment of OP, and the therapeutic effects of Chinese patent drugs and Chinese medicinal herbs have been scientifically proven. TCMs, which contain multiple components, can target the diverse pathogeneses of OP through a multitargeted approach. Herbs such as XLGB, JTG, GSB, Yinyanghuo, Gusuibu, Buguzhi, and Nvzhenzi are among the TCMs that can be used to treat OP and have demonstrated promising effects in this context. They exert their therapeutic effects by targeting various pathways involved in bone metabolism. These TCMs balance the activity of osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells), and they exhibit anti-inflammatory, immunomodulatory, anti-oxidative, and estrogen-like functions. These multifaceted mechanisms underlie the efficacy of these herbs in the management and treatment of OP. Herein, we examine the efficacy of various Chinese herbs and Chinese patent drugs in treating OP by reviewing previous clinical trials and basic experiments, and we examine the potential mechanism of these therapies to provide evidence regarding the use of TCM for treating OP.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Osteoporosis , Osteoporosis/drug therapy , Humans , Drugs, Chinese Herbal/pharmacology , Osteoblasts/drug effects , Osteoclasts/drug effects , Phytotherapy , Bone Remodeling/drug effects , Osteogenesis/drug effects , Bone Density/drug effects , Animals
14.
Lipids Health Dis ; 23(1): 181, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867213

ABSTRACT

INTRODUCTION: Although there has been abundant evidence of the association between dyslipidemia as a single factor and osteoporosis, the non-linear relationship between osteoporosis and the Atherogenic Index of Plasma (AIP) has not yet been thoroughly investigated. This study aimed to investigate the complex relationship between AIP and bone mineral density (BMD) to elucidate their interrelationship. METHODS: An analysis of 2007-2018 National Health and Nutrition Survey (NHANES) data was conducted for this study. The study enrolled 5,019 participants. Logarithmically multiplying triglycerides and high-density lipoprotein cholesterol yields the AIP (base 10). The measured variables consisted of BMD in the total femur (TF), femoral neck (FN), and lumbar spine (LS). The association between AIP and BMD was examined using a range of statistical models, such as weighted multivariable logistic regression, generalized additive model, etc. RESULTS: It was found that AIP was positively associated with BMD after adjusting for age, gender, race, socioeconomic status, degree of education, income, Consuming alcoholic beverages, osteoporosis status (Yes or No), ALT, AST, serum creatinine, and total calcium levels. Further studies supported the association link between elevated BMD and AIP. Furthermore, compared to men, females had a higher positive connection between AIP and BMD. In general, there was a curve in the reverse L-shape seen, with a point of change around 0.877, indicating a relationship between AIP and TF BMD. Moreover, a curve exhibiting an L-formed pattern, with a point of inflection at around 0.702, was seen between AIP and FN BMD. In addition, a J-shaped curve was seen, with a point of inflection at 0.092, which demonstrates the association between AIP and LS BMD. CONCLUSION: The AIP and TF BMD curves resemble inverted L shapes, as do the AIP and FN BMD curves. The relationship between AIP and LS BMD was further demonstrated by a J-shaped curve. The results indicate a possible association between AIP and bone mineral density, which should be explored in more detail.


Subject(s)
Atherosclerosis , Bone Density , Osteoporosis , Humans , Male , Female , Middle Aged , Cross-Sectional Studies , Atherosclerosis/blood , Osteoporosis/blood , Adult , Cholesterol, HDL/blood , Triglycerides/blood , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Femur Neck/diagnostic imaging , Aged , Nutrition Surveys , Femur/diagnostic imaging , Femur/physiopathology
15.
Hypertens Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914702

ABSTRACT

Hesperetin is one of the prominent flavonoids found in citrus fruit. Several research studies have reported that hesperetin can promote vasodilation in vascular tissue by increasing the level of nitric oxide and cyclic nucleotides. However, these may not be the only pathway for hesperetin to exert its vasodilatory effect. In addition to vasodilation, hesperetin has been found to carry an antihypertensive effect through intraperitoneal injection, although no study has comprehensively investigated the antihypertensive effect of hesperetin through oral administration. Therefore, this study aimed to determine the possible mechanism pathways involved in hesperetin-induced vasodilation and investigated its antihypertensive effects on hypertensive rats' model via oral administration. The ex vivo experimental findings showed that the NO/sGC/cGMP signalling pathway was involved in hesperetin-mediated vasodilation. Moreover, hesperetin activated the AC/cAMP/PKA pathway through PGI2 and activated the ß2-adrenergic receptor. Hesperetin can act as a voltage-gated potassium channel (KV) and ATP-sensitive potassium channel (KATP) opener. The intracellular calcium in vascular smooth muscle was reduced by hesperetin through blocking the voltage-operated calcium channels (VOCC) and inositol triphosphate receptor (IP3R). In the in vivo assessment, hesperetin shows a significant decrease in Spontaneously Hypertensive rats' blood pressure following 21 days of oral treatment. The sub-chronic toxicity assessment demonstrated that hesperetin exhibited no deleterious effects on the body weights, clinical biochemistry and haematological profile of Sprague-Dawley rats. This study implies that hesperetin holds promise as a potential medication for hypertension treatment, devoid of undesirable side effects.

16.
Animals (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791638

ABSTRACT

Zanthoxylum bungeanum seed meal (ZBM), a novel plant protein raw material, has shown promising potential in enhancing the growth of broiler chickens as a substitute for soybean meal (SBM) in feed. In the artificial digestive experiment of vitro experiments, the digestibility of ZBM and SBM were assessed using the SDS-III Single Stomach Animal Biometric Digestion System. Subsequently, 180 1-day old AA chicks were divided into three groups for in vivo experiments: corn-soybean-meal-based diet (CON group); ZBM replacing 5% soybean meal in the basal diet (ZBM-1 group); ZBM replacing 10% soybean meal in the basal diet (ZBM-2 group). The experiment period lasted for 42 days. Compared to SBM, ZBM demonstrated higher crude protein content, dry matter digestibility, and extracorporeal digestible protein. Compared with the CON group, the broilers in the ZBM-2 group showed improved ADG and ADFI during the 1-21 d, 22-42 d, and 1-42 d periods (p < 0.05). Furthermore, the ZBM groups exhibited significant increases in slaughter performance compared with the CON group (p < 0.05). The substitution of ZBM for SBM also leads to a significant reduction in serum enzyme indicators (p < 0.05). Additionally, the lipoprotein and total cholesterol of the ZBM groups were significantly lower than those of the CON group (p < 0.05). Substituting SBM with ZBM significantly enhances the activity of superoxide dismutase and the content of immunoglobulin G in broiler serum, while reducing the content of malondildehyde (p < 0.05). The ZBM groups showed significantly higher utilization of dry matter, crude protein, and energy compared with the CON group (p < 0.05). In conclusion, the study confirmed that the substitution of SBM with 5-10% ZBM in broiler diets has a significant positive effect on growth, development, antioxidant capacity, immune function, and nutrient utilization. This study not only provides a theoretical foundation for the utilization of ZBM in broiler diets but also offers an effective approach for reducing reliance on soybean meal.

17.
J Mater Chem B ; 12(23): 5734-5748, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771222

ABSTRACT

Biomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties in vitro and in vivo. The obtained CuCDs/OPAM exhibited good rBMSCs-cytocompatibility and anti-inflammatory properties in vitro. It also could effectively promote rBMSCs differentiation and the expression of osteogenic differentiation factors from rBMSCs under an inflammatory environment. Moreover, CuCDs/OPAM could induce macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) in vivo, which is beneficial for anti-inflammatory action and presents good osteoimmunomodulation capability to induce a bone immune microenvironment to promote the differentiation of rBMSCs. In conclusion, CuCDs/OPAM hydrogel has dual functions of osteoimmunomodulatory and bone repair and is a promising bone filling and repair material.


Subject(s)
Bone Regeneration , Carbon , Copper , Hydrogels , Osteogenesis , Osteogenesis/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Bone Regeneration/drug effects , Carbon/chemistry , Carbon/pharmacology , Animals , Copper/chemistry , Copper/pharmacology , Cell Differentiation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Quantum Dots/chemistry , Mice , Cells, Cultured , Macrophages/drug effects , Macrophages/cytology
18.
Int J Antimicrob Agents ; 64(2): 107214, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795933

ABSTRACT

Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Ketoglutaric Acids , Anti-Bacterial Agents/pharmacology , Animals , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Mice , Gentamicins/pharmacology , Drug Synergism , Microbial Sensitivity Tests , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Down-Regulation/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Disease Models, Animal
19.
Mol Biol Rep ; 51(1): 530, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637425

ABSTRACT

BACKGROUND: Osteoporosis (OP) is characterized by bone mass decrease and bone tissue microarchitectural deterioration in bone tissue. This study identified potential biomarkers for early diagnosis of OP and elucidated the mechanism of OP. METHODS: Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) for the GSE56814 dataset. A gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to identify key modules associated with healthy and OP samples. Functional enrichment analysis was conducted using the R clusterProfiler package for modules to construct the transcriptional regulatory factor networks. We used the "ggpubr" package in R to screen for differentially expressed genes between the two samples. Gene set variation analysis (GSVA) was employed to further validate hub gene expression levels between normal and OP samples using RT-PCR and immunofluorescence to evaluate the potential biological changes in various samples. RESULTS: There was a distinction between the normal and OP conditions based on the preserved significant module. A total of 100 genes with the highest MM scores were considered key genes. Functional enrichment analysis suggested that the top 10 biological processes, cellular component and molecular functions were enriched. The Toll-like receptor signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, osteoclast differentiation, JAK-STAT signaling pathway, and chemokine signaling pathway were identified by Kyoto Encyclopedia of Genes and Genomes pathway analysis. SIRT1 and ZNF350 were identified by Wilcoxon algorithm as hub differentially expressed transcriptional regulatory factors that promote OP progression by affecting oxidative phosphorylation, apoptosis, PI3K-Akt-mTOR signaling, and p53 pathway. According to RT-PCR and immunostaining results, SIRT1 and ZNF350 levels were significantly higher in OP samples than in normal samples. CONCLUSION: SIRT1 and ZNF350 are important transcriptional regulatory factors for the pathogenesis of OP and may be novel biomarkers for OP treatment.


Subject(s)
Osteoporosis , Sirtuin 1 , Humans , Sirtuin 1/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Osteoporosis/genetics , Biomarkers , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Repressor Proteins
20.
J Affect Disord ; 356: 371-378, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608764

ABSTRACT

BACKGROUND: Osteoporosis and major depressive disorder (MDD) represent two significant health challenges globally, particularly among perimenopausal women. This study utilizes NHANES data and Mendelian randomization (MR) analysis to explore the link between them, aiming to provide a basis for intervention strategies for this group. METHODS: The study analyzed NHANES 2007-2018 data using weighted logistic regression in R software to evaluate the link between MDD and osteoporosis risk. Then, a two-sample MR analysis with GWAS summary statistics was performed, mainly using the IVW method. Additional validation included MR Egger, Weighted Median, Mode, and MR-PRESSO methods. RESULTS: The research analysis indicated a significant link between MDD and the risk of osteopenia/osteoporosis. Our analysis revealed a significant positive relationship between MDD and both femoral neck osteoporosis (OR = 6.942 [95 % CI, 1.692-28.485]) and trochanteric osteoporosis (OR = 4.140 [95 % CI, 1.699-10.089]). In analyses related to osteopenia, a significant positive correlation was observed between MDD and both total femoral osteopenia (OR = 3.309 [95 % CI, 1.577-6.942]) and trochanteric osteopenia (OR = 2.467 [95 % CI, 1.004-6.062]). Furthermore, in the MR analysis, genetically predicted MDD was causally associated with an increased risk of osteoporosis via the IVW method (P = 0.013). LIMITATIONS: Our study was limited by potential selection bias due to excluding subjects with missing data, and its applicability was primarily to European and American populations. CONCLUSION: Integrating NHANES and MR analyses, a robust correlation between MDD and osteoporosis was identified, emphasizing the significance of addressing this comorbidity within clinical practice and meriting further investigation.


Subject(s)
Depressive Disorder, Major , Mendelian Randomization Analysis , Osteoporosis , Perimenopause , Humans , Female , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Middle Aged , Osteoporosis/genetics , Osteoporosis/epidemiology , Genome-Wide Association Study , Nutrition Surveys , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/epidemiology , Risk Factors , Adult
SELECTION OF CITATIONS
SEARCH DETAIL