Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720167

ABSTRACT

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Subject(s)
Antiviral Agents , Hydrazones , Nicotiana , Oxadiazoles , Plant Diseases , Tobacco Mosaic Virus , Tobacco Mosaic Virus/drug effects , Tobacco Mosaic Virus/physiology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Nicotiana/virology , Nicotiana/drug effects , Plant Diseases/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Drug Design , Structure-Activity Relationship , Plant Leaves/chemistry , Plant Leaves/drug effects , Molecular Structure
2.
Pestic Biochem Physiol ; 200: 105846, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582578

ABSTRACT

In recent years, the fungal disease 'pepper stem rot', contracted from the soil-borne pathogen sclerotium rolfsii, has been increasing year by year, causing significant losses to the pepper (Capsicum annuum L.) industry. To investigate the infection mechanism of stem rot, the fungus S. rolfsii was used to infect the roots of pepper plants, and was found to affect root morphology and reduce root activity, which subsequently inhibited root growth and development. With fungal infestation, its secretions (oxalic acid, PG and PMG enzyme) were able to break normal tissues in the stem base and induced the burst of the active oxygen, which leads to injury aggravation. Morphological observations of the site of damage at the base of the stem using SEM revealed that the vascular bundles and stomata were completely blocked by hyphae, resulting in a blockade of material exchange in the plant. It was subsequently found that most of the stomata in the leaves were closed, which caused the leaves to lose their ability to photosynthesize, then turned yellow, wilt, shed, and the plant died. Commercialized fungicide thifluzamide with excellent in vitro (EC50 = 0.1 µg/mL) and in vivo curative (EC50 = 29.2 µg/mL) antifungal activity was selected to control the stem rot disease in peppers. The results demonstrated that it was able to suppress the secretion of associated pathogenic factors and reduce the outbursts of reactive oxygen species, thus reducing the damage caused by S. rolfsii at the base of the plant's stem and also enhancing the root activity of the infected plant, thereby promoting root growth. It could also inhibit fungal growth, unblock the vascular bundles and stomata, maintain a balance of material and energy exchange within the plant, and thus restore the damaged plant to its normal growth capacity. All the results will provide an adequate reference for the prevention and control of stem rot disease on peppers with thifluzamide.


Subject(s)
Basidiomycota , Plant Diseases , Thiazoles , Plant Diseases/prevention & control , Plant Diseases/microbiology , Anilides
3.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240228

ABSTRACT

Tobacco mosaic virus (TMV) is a systemic virus that poses a serious threat to crops worldwide. In the present study, a series of novel 1-phenyl-4-(1,3,4-thiadiazole-5-thioether)-1H-pyrazole-5-amine derivatives was designed and synthesized. In vivo antiviral bioassay results indicated that some of these compounds exhibited excellent protective activity against TMV. Among the compounds, E2 (EC50 = 203.5 µg/mL) was superior to the commercial agent ningnanmycin (EC50 = 261.4 µg/mL). Observation of tobacco leaves infected with TMV-GFP revealed that E2 could effectively inhibit the spread of TMV in the host. Further plant tissue morphological observation indicated that E2 could induce the tight arrangement and alignment of the spongy mesophyll and palisade cells while causing stomatal closure to form a defensive barrier to prevent viral infection in the leaves. In addition, the chlorophyll content of tobacco leaves was significantly increased after treatment with E2, and the net photosynthesis (Pn) value was also increased, which demonstrated that the active compound could improve the photosynthetic efficiency of TMV-infected tobacco leaves by maintaining stable chlorophyll content in the leaves, thereby protecting host plants from viral infection. The results of MDA and H2O2 content determination revealed that E2 could effectively reduce the content of peroxides in the infected plants, reducing the damage to the plants caused by oxidation. This work provides an important support for the research and development of antiviral agents in crop protection.


Subject(s)
Tobacco Mosaic Virus , Virus Diseases , Tobacco Mosaic Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Nicotiana/metabolism , Hydrogen Peroxide/metabolism , Chlorophyll/metabolism , Photosynthesis , Structure-Activity Relationship , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...