ABSTRACT
ß-cell replacement therapy, available currently as pancreas or islet transplantation, has developed without a clear definition of graft functional and clinical outcomes. The International Pancreas and Islet Transplant Association and European Pancreas and Islet Transplantation Association held a workshop to develop consensus for an International Pancreas and Islet Transplant Association and European Pancreas and Islet Transplant Association Statement on the definition of function and failure of current and future forms of ß-cell replacement therapy. There was consensus that ß-cell replacement therapy could be considered as a treatment for ß-cell failure, regardless of etiology and without requiring undetectable C-peptide, accompanied by glycemic instability with either problematic hypoglycemia or hyperglycemia. Glycemic control should be assessed at a minimum by glycated hemoglobin (HbA1c) and the occurrence of severe hypoglycemia. Optimal ß-cell graft function is defined by near-normal glycemic control (HbA1c ≤6.5% [48 mmol/mol]) without severe hypoglycemia or requirement for insulin or other antihyperglycemic therapy, and with an increase over pretransplant measurement of C-peptide. Good ß-cell graft function requires HbA1c less than 7.0% (53 mmol/mol) without severe hypoglycemia and with a significant (>50%) reduction in insulin requirements and restoration of clinically significant C-peptide production. Marginal ß-cell graft function is defined by failure to achieve HbA1c less than 7.0% (53 mmol/mol), the occurrence of any severe hypoglycemia, or less than 50% reduction in insulin requirements when there is restoration of clinically significant C-peptide production documented by improvement in hypoglycemia awareness/severity, or glycemic variability/lability. A failed ß-cell graft is defined by the absence of any evidence for clinically significant C-peptide production. Optimal and good function are considered successful clinical outcomes.
Subject(s)
Diabetes Mellitus/surgery , Insulin-Secreting Cells/transplantation , Islets of Langerhans Transplantation/methods , Biomarkers/blood , Blood Glucose/metabolism , C-Peptide/blood , Consensus , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Glycated Hemoglobin/metabolism , Humans , Hypoglycemia/blood , Hypoglycemia/etiology , Hypoglycemic Agents/therapeutic use , Insulin-Secreting Cells/metabolism , Islets of Langerhans Transplantation/adverse effects , Islets of Langerhans Transplantation/standards , Risk Factors , Treatment OutcomeABSTRACT
BACKGROUND: Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. OBJECTIVE: We evaluated 6706 cis-acting expression-associated variants (eSNPs) identified through a genome-wide eQTL survey of CD4(+) lymphocytes for association with asthma. METHODS: eSNPs were tested for association with asthma in 359 asthmatic patients and 846 control subjects from the Childhood Asthma Management Program, with verification by using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by using formaldehyde-assisted isolation of regulatory elements (FAIRE) quantitative PCR and chromatin immunoprecipitation PCR in lung-derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. RESULTS: Cis-acting eSNPs demonstrated associations with asthma in both cohorts. We confirmed the previously reported association of ORMDL3/GSDMB variants with asthma (combined P = 2.9 × 10(-8)). Reproducible associations were also observed for eSNPs in 3 additional genes: fatty acid desaturase 2 (FADS2; P = .002), N-acetyl-α-D-galactosaminidase (NAGA; P = .0002), and Factor XIII, A1 (F13A1; P = .0001). Subsequently, we demonstrated that FADS2 mRNA is increased in CD4(+) lymphocytes in asthmatic patients and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. CONCLUSIONS: Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma.