Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
J Hered ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616677

ABSTRACT

The California Pipevine, Aristolochia californica Torr., is the only endemic California species within the cosmopolitan birthwort family Aristolochiaceae. It occurs as an understory vine in riparian and chaparral areas and in forest edges and windrows. The geographic range of this plant species almost entirely overlaps with that of its major specialized herbivore, the California Pipevine Swallowtail Butterfly Battus philenor hirsuta. While this species pair is a useful, ecologically well-understood system to study co-evolution, until recently, genomic resources for both have been lacking. Here, we report a new, chromosome-level assembly of A. californica as part of the California Conservation Genomics Project (CCGP). Following the sequencing and assembly strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin proximity sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus, contains 531 scaffolds spanning 661 megabase (Mb) pairs, with a contig N50 of 6.53 Mb, a scaffold N50 of 42.2 Mb, and BUSCO complete score of 98%. In combination with the recently published B. philenor hirsuta reference genome assembly, the A. californica reference genome assembly will be a powerful tool for studying co-evolution in a rapidly changing California landscape.

2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464294

ABSTRACT

Plant secondary metabolites pose a challenge for generalist herbivorous insects because they are not only potentially toxic, they also may trigger aversion. On the contrary, some highly specialized herbivorous insects evolved to use these same compounds as 'token stimuli' for unambiguous determination of their host plants. Two questions that emerge from these observations are how recently derived herbivores evolve to overcome this aversion to plant secondary metabolites and the extent to which they evolve increased attraction to these same compounds. In this study, we addressed these questions by focusing on the evolution of bitter taste preferences in the herbivorous drosophilid Scaptomyza flava, which is phylogenetically nested deep in the paraphyletic Drosophila. We measured behavioral and neural responses of S. flava and a set of non-herbivorous species representing a phylogenetic gradient (S. pallida, S. hsui, and D. melanogaster) towards host- and non-host derived bitter plant compounds. We observed that S. flava evolved a shift in bitter detection, rather than a narrow shift towards glucosinolates, the precursors of mustard-specific defense compounds. In a dye-based consumption assay, S. flava exhibited shifts in aversion toward the non-mustard bitter, plant-produced alkaloids caffeine and lobeline, and reduced aversion towards glucosinolates, whereas the non-herbivorous species each showed strong aversion to all bitter compounds tested. We then examined whether these changes in bitter preferences of S. flava could be explained by changes in sensitivity in the peripheral nervous system and compared electrophysiological responses from the labellar sensilla of S. flava, S. pallida, and D. melanogaster. Using scanning electron microscopy, we also created a map of labellar sensilla in S. flava and S. pallida. We assigned each sensillum to a functional sensilla class based on their morphology and initial response profiles to bitter and sweet compounds. Despite a high degree of conservation in the morphology and spatial placement of sensilla between S. flava and S. pallida, electrophysiological studies revealed that S. flava had reduced sensitivity to glucosinolates to varying degrees. We found this reduction only in I type sensilla. Finally, we speculate on the potential role that evolutionary genetic changes in gustatory receptors between S. pallida and S. flava may play in driving these patterns. Specifically, we hypothesize that the evolution of bitter receptors expressed in I type sensilla may have driven the reduced sensitivity observed in S. flava, and ultimately, its reduced bitter aversion. The S. flava system showcases the importance of reduced aversion to bitter defense compounds in relatively young herbivorous lineages, and how this may be achieved at the molecular and physiological level.

4.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37466215

ABSTRACT

North American minnows (Cypriniformes: Leuciscidae) comprise a diverse taxonomic group, but many members, particularly those inhabiting deserts, face elevated extinction risks. Despite conservation concerns, leuciscids remain under sampled for reference assemblies relative to other groups of freshwater fishes. Here, we present 2 chromosome-scale reference genome assemblies spikedace (Meda fulgida) and loach minnow (Tiaroga cobitis) using PacBio, Illumina and Omni-C technologies. The complete assembly for spikedace was 882.1 Mb in total length comprised of 83 scaffolds with N50 = 34.8 Mb, L50 = 11, N75 = 32.3 Mb, and L75 = 18. The complete assembly for loach minnow was 1.3 Gb in total length comprised of 550 scaffolds with N50 = 48.6 Mb, L50 = 13, N75 = 42.3 Mb, and L75 = 20. Completeness assessed via Benchmarking Universal Single-Copy Orthologues (BUSCO) metrics using the Actinopterygii BUSCO database showed ∼97% for spikedace and ∼98% for loach minnow of complete BUSCO proportions. Annotation revealed approximately 32.58 and 29.04% of spikedace and loach minnow total genome lengths to be comprised of protein-coding genes, respectively. Comparative genomic analyses of these endangered and co-distributed fishes revealed widespread structural variants, gene family expansions, and evidence of positive selection in both genomes.


Subject(s)
Cyprinidae , Fishes , Animals , Fishes/genetics , Chromosomes , Genome , Cyprinidae/genetics , Molecular Sequence Annotation
5.
J Hered ; 114(6): 698-706, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37428819

ABSTRACT

The California Pipevine Swallowtail Butterfly, Battus philenor hirsuta, and its host plant, the California Pipevine or Dutchman's Pipe, Aristolochia californica Torr., are an important California endemic species pair. While this species pair is an ideal system to study co-evolution, genomic resources for both are lacking. Here, we report a new, chromosome-level assembly of B. philenor hirsuta as part of the California Conservation Genomics Project (CCGP). Following the sequencing and assembly strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin proximity sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus, contains 109 scaffolds spanning 443 mega base (Mb) pairs, with a contig N50 of 14.6 Mb, a scaffold N50 of 15.2 Mb, and BUSCO complete score of 98.9%. In combination with the forthcoming A. californica reference genome, the B. philenor hirsuta genome will be a powerful tool for documenting landscape genomic diversity and plant-insect co-evolution in a rapidly changing California landscape.


Subject(s)
Aristolochia , Butterflies , Animals , Butterflies/genetics , Aristolochia/genetics , Genome , Genomics , Chromosomes
6.
Nat Ecol Evol ; 7(9): 1444-1456, 2023 09.
Article in English | MEDLINE | ID: mdl-37460839

ABSTRACT

The molecular mechanisms of coevolution between plants and insects remain elusive. GABA receptors are targets of many neurotoxic terpenoids, which represent the most diverse array of natural products known. Over deep evolutionary time, as plant terpene synthases diversified in plants, so did plant terpenoid defence repertoires. Here we show that herbivorous insects and their predators evolved convergent amino acid changing substitutions in duplicated copies of the Resistance to dieldrin (Rdl) gene that encodes the GABA receptor, and that the evolution of duplicated Rdl and terpenoid-resistant GABA receptors is associated with the diversification of moths and butterflies. These same substitutions also evolved in pests exposed to synthetic insecticides that target the GABA receptor. We used in vivo genome editing in Drosophila melanogaster to evaluate the fitness effects of each putative resistance mutation and found that pleiotropy both facilitates and constrains the evolution of GABA receptor resistance. The same genetic changes that confer resistance to terpenoids across 300 Myr of insect evolution have re-evolved in response to synthetic analogues over one human lifespan.


Subject(s)
Butterflies , Receptors, GABA , Animals , Humans , Receptors, GABA/genetics , Neurotoxins/pharmacology , Drosophila melanogaster/genetics , Insecticide Resistance/genetics , Dieldrin/toxicity , Insecta/genetics , Terpenes/pharmacology
7.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37317982

ABSTRACT

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.


Subject(s)
Drosophila Proteins , Herbivory , Animals , Herbivory/genetics , Drosophila/genetics , Drosophila/metabolism , Insecta , Drosophila Proteins/genetics , Genomics/methods , Phylogeny , Evolution, Molecular
8.
Microorganisms ; 11(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37374908

ABSTRACT

Smokers (SM) have increased lung immune cell counts and inflammatory gene expression compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflammatory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28). RNASeq with the CIBERSORT computational algorithm were used to determine immune cell subtypes, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68, 19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and inversely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct lung profiles for each participant group. There were three bacteria genera-DEG correlations and three bacteria genera-macrophage subtype correlations. In this pilot study, SM and EC use were associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.

9.
Curr Biol ; 33(11): R467-R469, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37279675

ABSTRACT

Whiteman introduces mistletoes, above-ground parasitic plants.


Subject(s)
Mistletoe
10.
Proc Natl Acad Sci U S A ; 120(16): e2218334120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036995

ABSTRACT

Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.


Subject(s)
Bacterial Toxins , Wasps , Animals , Domestication , Bacterial Toxins/metabolism , Drosophila/genetics , Drosophila/metabolism , Gene Transfer, Horizontal , Wasps/metabolism , Immunity, Innate/genetics
11.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993186

ABSTRACT

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .

12.
Semin Arthritis Rheum ; 59: 152177, 2023 04.
Article in English | MEDLINE | ID: mdl-36796211

ABSTRACT

OBJECTIVE: Disease-modifying anti-rheumatic drugs (DMARDs) that treat rheumatoid arthritis (RA) may reduce immune responses to COVID-19 vaccination. We compared humoral and cell-mediated immunity before and after a 3rd dose of mRNA COVID vaccine in RA subjects. METHODS: RA patients that received 2 doses of mRNA vaccine enrolled in an observational study in 2021 before receiving a 3rd dose. Subjects self-reported holding or continuing DMARDs. Blood samples were collected pre- and 4 weeks after the 3rd dose. 50 healthy controls provided blood samples. Humoral response was measured with in-house ELISA assays for anti-Spike IgG (anti-S) and anti-receptor binding domain IgG (anti-RBD). T cell activation was measured after stimulation with SARS-CoV-2 peptide. Spearman's correlations assessed the relationship between anti-S, anti-RBD, and frequencies of activated T cells. RESULTS: Among 60 subjects, mean age was 63 years and 88% were female. 57% of subjects held at least 1 DMARD around the 3rd dose. 43% (anti-S) and 62% (anti-RBD) had a normal humoral response at week 4, defined as ELISA within 1 standard deviation of the healthy control mean. No differences in antibody levels were observed based on holding DMARDs. Median frequency of activated CD4 T cells was significantly greater post- vs. pre-3rd dose. Changes in antibody levels did not correlate with change in frequency of activated CD4 T cells. CONCLUSION: Virus-specific IgG levels significantly increased in RA subjects using DMARDs after completing the primary vaccine series, though fewer than two-thirds achieved a humoral response like healthy controls. Humoral and cellular changes were not correlated.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , COVID-19 , Humans , Female , Middle Aged , Male , COVID-19 Vaccines , SARS-CoV-2 , Immunity, Cellular , RNA, Messenger , Immunoglobulin G
13.
Curr Biol ; 32(24): R1330-R1333, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36538879

ABSTRACT

Interview with Noah Whiteman, who studies adaptations that arise from species interactions.

14.
Proc Biol Sci ; 289(1986): 20221938, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36350206

ABSTRACT

Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.


Subject(s)
Drosophilidae , Animals , Drosophilidae/genetics , Herbivory/genetics , Phylogeny , Genome-Wide Association Study , Drosophila/genetics , Genomics
15.
Cancer Prev Res (Phila) ; 15(7): 435-446, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35667088

ABSTRACT

The microbiome has increasingly been linked to cancer. Little is known about the lung and oral cavity microbiomes in smokers, and even less for electronic cigarette (EC) users, compared with never-smokers. In a cross-sectional study (n = 28) of smokers, EC users, and never-smokers, bronchoalveolar lavage and saliva samples underwent metatranscriptome profiling to examine associations with lung and oral microbiomes. Pairwise comparisons assessed differentially abundant bacteria species. Total bacterial load was similar between groups, with no differences in bacterial diversity across lung microbiomes. In lungs, 44 bacteria species differed significantly (FDR < 0.1) between smokers/never-smokers, with most decreased in smokers. Twelve species differed between smokers/EC users, all decreased in smokers of which Neisseria sp. KEM232 and Curvibacter sp. AEP1-3 were observed. Among the top five decreased species in both comparisons, Neisseria elongata, Neisseria sicca, and Haemophilus parainfluenzae were observed. In the oral microbiome, 152 species were differentially abundant for smokers/never-smokers, and 17 between smokers/electronic cigarette users, but only 21 species were differentially abundant in both the lung and oral cavity. EC use is not associated with changes in the lung microbiome compared with never-smokers, indicating EC toxicity does not affect microbiota. Statistically different bacteria in smokers compared with EC users and never-smokers were almost all decreased, potentially due to toxic effects of cigarette smoke. The low numbers of overlapping oral and lung microbes suggest that the oral microbiome is not a surrogate for analyzing smoking-related effects in the lung. PREVENTION RELEVANCE: The microbiome affects cancer and other disease risk. The effects of e-cig usage on the lung microbiome are essentially unknown. Given the importance of lung microbiome dysbiosis populated by oral species which have been observed to drive lung cancer progression, it is important to study effects of e-cig use on microbiome.


Subject(s)
Electronic Nicotine Delivery Systems , Microbiota , Vaping , Bacteria , Cross-Sectional Studies , Lung , Saliva
16.
J Hered ; 113(2): 197-204, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35575080

ABSTRACT

For agriculturally important plants, pollination and herbivory are 2 ecological factors that play into the success of crop yields. Each is also important in natural environments where invasive plants and their effect on species interactions may alter the native ecology. The California Wild Radish (Raphanus sativus × raphanistrum), a hybrid derived from an agriculturally important crop and a nonnative cultivar, is common in California. Remarkably, it has recently replaced wild populations of both progenitor species. Experiments on phenotypic variation for petal color and antiherbivore defenses suggest both pairs of polymorphisms are maintained as a result of pollinator- and herbivore-mediated natural selection. This species provides an opportunity to understand how natural selection shapes the evolution of ecologically important traits when traits are constrained by 2 opposing forces. Here we provide the genome assembly of the California Wild Radish displaying improvement to currently existing genomes for agronomically important crucifers. This genome sequence provides the tools to dissect the genomic architecture of traits related to herbivory and pollination using natural variation in the wild as well as the ability to infer demographic and selective history in the context of hybridization. Study systems like these will improve our understanding and predictions of evolutionary change for correlated traits.


Subject(s)
Raphanus , Herbivory , Hybridization, Genetic , Phenotype , Pollination , Raphanus/genetics
17.
Sci Immunol ; 7(78): eabp8328, 2022 12 23.
Article in English | MEDLINE | ID: mdl-35549298

ABSTRACT

Key features of immune memory are greater and faster antigen-specific antibody responses to repeat infection. In the setting of immune-evading viral evolution, it is important to understand how far antibody memory recognition stretches across viral variants when memory cells are recalled to action by repeat invasions. It is also important to understand how immune recall influences longevity of secreted antibody responses. We analyzed SARS-CoV-2 variant recognition; dynamics of memory B cells; and secreted antibody over time after infection, vaccination, and boosting. We find that a two-dose SARS-CoV-2 vaccination regimen given after natural infection generated greater longitudinal antibody stability and induced maximal antibody magnitudes with enhanced breadth across Beta, Gamma, Delta and Omicron variants. A homologous third messenger RNA vaccine dose in COVID-naïve individuals conferred greater cross-variant evenness of neutralization potency with stability that was equal to the hybrid immunity conferred by infection plus vaccination. Within unvaccinated individuals who recovered from COVID, enhanced antibody stability over time was observed within a subgroup of individuals who recovered more quickly from COVID and harbored significantly more memory B cells cross-reactive to endemic coronaviruses early after infection. These cross-reactive clones map to the conserved S2 region of SARS-CoV-2 spike with higher somatic hypermutation levels and greater target affinity. We conclude that SARS-CoV-2 antigen challenge histories in humans influence not only the speed and magnitude of antibody responses but also functional cross-variant antibody repertoire composition and longevity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Antibodies
19.
Evolution ; 76(S1): 15-19, 2022 02.
Article in English | MEDLINE | ID: mdl-35132642

ABSTRACT

As we look to the next 75 years, I recount how the sociopolitical milieu in which the Society for the Study of Evolution (SSE) and the journal Evolution were formed in 1947 was a "problem of interaction."

20.
Evolution ; 76(S1): 67-77, 2022 02.
Article in English | MEDLINE | ID: mdl-35040122

ABSTRACT

The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."


Subject(s)
Adaptation, Physiological , Biological Evolution , Acclimatization , Animals , Multifactorial Inheritance , Phenotype , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...