Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054282

ABSTRACT

The epidermal growth factor receptor (EGFR) protein is highly expressed in a range of malignancies. Although therapeutic interventions directed toward EGFR have yielded therapeutic responses in cancer patients, side effects are common because of normal-tissue expression of wild-type EGFR. We developed a novel tumor-specific anti-EGFR chimeric antibody ch806 labeled with 225Ac and evaluated its in vitro properties and therapeutic efficacy in murine models of glioblastoma and colorectal cancer. Methods: 225Ac-ch806 was prepared using different chelators, yielding [225Ac]Ac-macropa-tzPEG3Sq-ch806 and [225Ac]Ac-DOTA-dhPzPEG4-ch806. Radiochemical yield, purity, apparent specific activity, and serum stability of 225Ac-ch806 were quantified. In vitro cell killing effect was examined. The biodistribution and therapeutic efficacy of 225Ac-ch806 were investigated in mice with U87MG.de2-7 and DiFi tumors. Pharmacodynamic analysis of tumors after therapy was performed, including DNA double-strand break immunofluorescence of γH2AX, as well as immunohistochemistry for proliferation, cell cycle arrest, and apoptosis. Results: [225Ac]Ac-macropa-tzPEG3Sq-ch806 surpassed [225Ac]Ac-DOTA-dhPzPEG4-ch806 in radiochemical yield, purity, apparent specific activity, and serum stability. [225Ac]Ac-macropa-tzPEG3Sq-ch806 was therefore used for both in vitro and in vivo studies. It displayed a significant, specific, and dose-dependent in vitro cell-killing effect in U87MG.de2-7 cells. 225Ac-ch806 also displayed high tumor uptake and minimal uptake in normal tissues. 225Ac-ch806 significantly inhibited tumor growth and prolonged survival in both U87MG.de2-7 and DiFi models. Enhanced γH2AX staining was observed in 225Ac-ch806-treated tumors compared with controls. Reduced Ki-67 expression was evident in all 225Ac-ch806-treated tumors. Increased expression of p21 and cleaved caspase 3 was shown in U87MG.de2-7 and DiFi tumors treated with 225Ac-ch806. Conclusion: In glioblastoma and colorectal tumor models, 225Ac-ch806 significantly inhibited tumor growth via induction of double-strand breaks, thereby constraining cancer cell proliferation while inducing cell cycle arrest and apoptosis. These findings underscore the potential clinical applicability of 225Ac-ch806 as a potential therapy for EGFR-expressing solid tumors.

2.
Chem Sci ; 15(9): 3372-3381, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425522

ABSTRACT

Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL