Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 183: 103660, 2024 08.
Article in English | MEDLINE | ID: mdl-38820862

ABSTRACT

Tardigrades are invertebrates known to science for over 250 years. Although the ability of some species of tardigrades to form cysts has been reported, little is known about the encystment and internal organisation of the cysts. During cyst formation, contraction of the body affects the internal organs' morphology. The organs are compressed and have a compact appearance. The organisation of the digestive system, associated structures, and the reproductive system are analysed in cysts on indefinite and well-defined encystment periods - up to eleven months. The digestive system of encysted animals was organised into three main parts - a foregut, a midgut, and a hindgut. The presence of digestive system-associated structures, such as buccal glands or muscles, was noted and described. The excretory organs, called Malpighian tubules, open into the zone between the midgut and the hindgut. Furthermore, the oviduct opens into the hindgut. The first analysis of the reproductive system of cysts at the ultrastructural level is presented here, revealing interesting and undescribed aspects related to the physiology. Besides the anatomical and histological examination, the morphology and changes that occur during cyst formation are described.


Subject(s)
Digestive System , Tardigrada , Animals , Tardigrada/physiology , Digestive System/ultrastructure , Digestive System/anatomy & histology , Genitalia/anatomy & histology , Genitalia/ultrastructure , Fresh Water , Microscopy, Electron, Transmission , Female
2.
Sci Rep ; 14(1): 5097, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429316

ABSTRACT

Increasing temperature influences the habitats of various organisms, including microscopic invertebrates. To gain insight into temperature-dependent changes in tardigrades, we isolated storage cells exposed to various temperatures and conducted biochemical and ultrastructural analysis in active and tun-state Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. The abundance of heat shock proteins (HSPs) and ultrastructure of the storage cells were examined at different temperatures (20 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 42 °C) in storage cells isolated from active specimens of Pam. experimentalis. In the active animals, upon increase in external temperature, we observed an increase in the levels of HSPs (HSP27, HSP60, and HSP70). Furthermore, the number of ultrastructural changes in storage cells increased with increasing temperature. Cellular organelles, such as mitochondria and the rough endoplasmic reticulum, gradually degenerated. At 42 °C, cell death occurred by necrosis. Apart from the higher electron density of the karyoplasm and the accumulation of electron-dense material in some mitochondria (at 42 °C), almost no changes were observed in the ultrastructure of tun storage cells exposed to different temperatures. We concluded that desiccated (tun-state) are resistant to high temperatures, but not active tardigrades (survival rates of tuns after 24 h of rehydration: 93.3% at 20 °C, 60.0% at 35 °C, 33.3% at 37 °C, 33.3% at 40 °C, and 20.0% at 42 °C).


Subject(s)
Tardigrada , Animals , Temperature , Tardigrada/metabolism , Heat-Shock Proteins/metabolism , Invertebrates/metabolism , HSP70 Heat-Shock Proteins , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL