Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Article En | MEDLINE | ID: mdl-37454773

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Calcium Channels , Calcium , Humans , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Ion Transport , Mitochondria/genetics , Mitochondria/metabolism , Muscles/metabolism
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article En | MEDLINE | ID: mdl-34948281

Mitochondrial functional integrity depends on protein and lipid homeostasis in the mitochondrial membranes and disturbances in their accumulation can cause disease. AGK, a mitochondrial acylglycerol kinase, is not only involved in lipid signaling but is also a component of the TIM22 complex in the inner mitochondrial membrane, which mediates the import of a subset of membrane proteins. AGK mutations can alter both phospholipid metabolism and mitochondrial protein biogenesis, contributing to the pathogenesis of Sengers syndrome. We describe the case of an infant carrying a novel homozygous AGK variant, c.518+1G>A, who was born with congenital cataracts, pielic ectasia, critical congenital dilated myocardiopathy, and hyperlactacidemia and died 20 h after birth. Using the patient's DNA, we performed targeted sequencing of 314 nuclear genes encoding respiratory chain complex subunits and proteins implicated in mitochondrial oxidative phosphorylation (OXPHOS). A decrease of 96-bp in the length of the AGK cDNA sequence was detected. Decreases in the oxygen consumption rate (OCR) and the OCR:ECAR (extracellular acidification rate) ratio in the patient's fibroblasts indicated reduced electron flow through the respiratory chain, and spectrophotometry revealed decreased activity of OXPHOS complexes I and V. We demonstrate a clear defect in mitochondrial function in the patient's fibroblasts and describe the possible molecular mechanism underlying the pathogenicity of this novel AGK variant. Experimental validation using in vitro analysis allowed an accurate characterization of the disease-causing variant.


Cardiomyopathies/genetics , Cataract/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Cardiomyopathies/mortality , Cataract/mortality , Fibroblasts/metabolism , Humans , Infant, Newborn , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/physiology , Mutation , Oxidative Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Transport/genetics , RNA Splicing/genetics
3.
Hum Mutat ; 42(2): 135-141, 2021 02.
Article En | MEDLINE | ID: mdl-33169484

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Acidosis, Lactic , Brain Diseases , Cardiomyopathies , Cytochrome-c Oxidase Deficiency , Liver Diseases , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Acidosis, Lactic/genetics , Cardiomyopathies/genetics , Cytochrome-c Oxidase Deficiency/genetics , Humans , Infant, Newborn , Mitochondrial Proteins/metabolism
4.
J Med Genet ; 57(1): 23-30, 2020 01.
Article En | MEDLINE | ID: mdl-31494578

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Cardiomyopathy, Dilated/genetics , Mutation, Missense , Myocardium/pathology , Superoxide Dismutase/genetics , Amino Acid Sequence , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/metabolism , Conserved Sequence , DNA Mutational Analysis , Female , Homozygote , Humans , Infant , Infant, Newborn , Mitochondria/metabolism , Myocardium/metabolism , Oxidative Stress , Pedigree , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxides/metabolism
5.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Article En | MEDLINE | ID: mdl-31422819

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Alleles , Aspartic Acid/metabolism , Brain Diseases/genetics , Fatty Acid-Binding Proteins/genetics , Malates/metabolism , Mutation , Animals , Child , Child, Preschool , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Exome Sequencing
6.
Eur J Med Genet ; 62(11): 103572, 2019 Nov.
Article En | MEDLINE | ID: mdl-30423443

Mitochondrial complex I deficiency is the most frequent mitochondrial disorder presenting in childhood and the mutational spectrum is highly heterogeneous. The NDUFB11 gene is one of the recently identified genes, which is located in the short arm of the X-chromosome. Here we report clinical, biochemical, functional and genetic findings of two male patients with lactic acidosis, hypertrophic cardiomyopathy and isolated complex I deficiency due to de novo hemizygous mutations (c.286C > T and c.328C > T) in the NDUFB11 gene. Neither of them had any skin manifestations. The NDUFB11 gene encodes a relatively small integral membrane protein NDUFB11, which is essential for the assembly of an active complex I. The expression levels of this protein was decreased in both patient cells and a lentiviral complementation experiment also supported the notion that the complex I deficiency in those two patients is caused by NDUFB11 genetic defects. Our findings together with a review of the thirteen previously described patients demonstrate a wide spectrum of clinical features associated with NDUFB11-related complex I deficiency. However, histiocytoid cardiomyopathy and/or congenital sideroblastic anemia could be indicative for mutation in the NDUFB11 gene, while the clinical manifestation of the same mutation can be highly variable.


Anemia, Sideroblastic/genetics , Electron Transport Complex I/deficiency , Genetic Diseases, X-Linked/genetics , Mitochondrial Diseases/genetics , Adolescent , Anemia, Sideroblastic/pathology , Child, Preschool , Electron Transport Complex I/genetics , Genetic Diseases, X-Linked/pathology , Humans , Male , Mitochondrial Diseases/pathology , Mutation , Phenotype
7.
Nat Commun ; 9(1): 4065, 2018 10 03.
Article En | MEDLINE | ID: mdl-30283131

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Cardiomyopathies/enzymology , Cardiomyopathies/genetics , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mutation/genetics , Nitrogenous Group Transferases/genetics , Protein Subunits/genetics , Amino Acid Sequence , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Infant, Newborn , Lentivirus/metabolism , Male , Models, Molecular , Myocardium/pathology , Myocardium/ultrastructure , Nitrogenous Group Transferases/chemistry , Nitrogenous Group Transferases/metabolism , Oxidative Phosphorylation , Pedigree , Protein Biosynthesis , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism
8.
Hum Mutat ; 38(12): 1786-1795, 2017 12.
Article En | MEDLINE | ID: mdl-28905505

Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl-tRNA synthases. Eukaryotic cells contain 17 mitochondria-specific aminoacyl-tRNA synthases. WARS2 encodes mitochondrial tryptophanyl-tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan-tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.


Amino Acyl-tRNA Synthetases/genetics , Genetic Variation , Intellectual Disability/genetics , Mitochondrial Diseases/genetics , Mitochondrial Encephalomyopathies/genetics , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/metabolism , Exome/genetics , Female , Humans , Infant, Newborn , Intellectual Disability/enzymology , Male , Mitochondrial Diseases/enzymology , Mitochondrial Encephalomyopathies/enzymology , Mitochondrial Encephalomyopathies/pathology , Models, Molecular , Mutation , Pedigree , Phenotype , Pregnancy , Sequence Alignment , Exome Sequencing
9.
Eur J Hum Genet ; 25(11): 1273-1277, 2017 11.
Article En | MEDLINE | ID: mdl-28853723

Mitochondrial respiratory chain complex I consists of 44 different subunits and can be subgrouped into three functional modules: the Q-, the P- and the N-module. NDUFAF4 (C6ORF66) is an assembly factor of complex I that associates with assembly intermediates of the Q-module. Via exome sequencing, we identified a homozygous missense variant in a complex I-deficient patient with Leigh syndrome. Supercomplex analysis in patient fibroblasts revealed specifically altered stoichiometry. Detailed assembly analysis of complex I, indicative of all of its assembly routes, showed an accumulation of parts of the P- and the N-module but not the Q-module. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and the assembly defect, confirming the causal role of the variant. Our report on the second family affected by an NDUFAF4 variant further characterizes the phenotypic spectrum and sheds light into the role of NDUFAF4 in mitochondrial complex I biogenesis.


Calmodulin-Binding Proteins/genetics , Leigh Disease/genetics , Mutation, Missense , Calmodulin-Binding Proteins/metabolism , Cells, Cultured , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Fibroblasts/metabolism , Homozygote , Humans , Infant , Leigh Disease/pathology , Male , Protein Multimerization
10.
Cardiovasc Res ; 111(4): 362-72, 2016 09.
Article En | MEDLINE | ID: mdl-27402402

AIMS: In cardiac hypertrophy (CH) and heart failure (HF), alterations occur in mitochondrial enzyme content and activities but the origin and implications of these changes for mitochondrial function need to be resolved. METHODS AND RESULTS: Right ventricular CH or HF was induced by monocrotaline injection, which causes pulmonary artery hypertension, in rats. Results were compared with saline injection (CON). NAD(P)H and FAD autofluorescence were recorded in thin intact cardiac trabeculae during transitions in stimulation frequency, to assess mitochondrial complex I and complex II function, respectively. Oxygen consumption, mitochondrial morphology, protein content, and enzymatic activity were assessed. NAD(P)H autofluorescence upon an increase in stimulation frequency showed a rapid decline followed by a slow recovery. FAD autofluorescence followed a similar time course, but in opposite direction. The amplitude of the early rapid change in NAD(P)H autofluorescence was severely depressed in CH and HF compared with CON. The rapid changes in FAD autofluorescence in CH and HF were reduced to a lesser extent. Complex I-coupled respiration showed an ∼3.5-fold reduction in CH and HF; complex II-coupled respiration was depressed two-fold in HF. Western blot analyses revealed modest reductions in complex I protein content in CH and HF and in complex I activity in supercomplexes in HF. Mitochondrial volume density was similar, but mitochondrial remodelling was evident from changes in ultrastructure and fusion/fission indices in CH and HF. CONCLUSION: These results suggest that the alterations in mitochondrial function observed in right ventricular CH and HF can be mainly attributed to complex I dysfunction.


Hypertrophy, Right Ventricular/metabolism , Mitochondria/metabolism , Myocardium/metabolism , NADP/metabolism , Animals , Cardiomegaly/metabolism , Disease Models, Animal , Heart/physiopathology , Male , NAD/metabolism , Oxygen Consumption/physiology , Rats, Wistar
11.
Biochim Biophys Acta ; 1822(2): 168-75, 2012 Feb.
Article En | MEDLINE | ID: mdl-22036843

In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.


Electron Transport Complex I/genetics , Leigh Disease/genetics , Mitochondria/enzymology , Mutation , NADH Dehydrogenase/genetics , Amino Acid Sequence , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Catalysis , Electron Transport Complex I/metabolism , Female , Fibroblasts/metabolism , Homozygote , Humans , Infant , Infant, Newborn , Leigh Disease/enzymology , Leigh Disease/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Sequence Data , NADH Dehydrogenase/metabolism , Protein Conformation , Transduction, Genetic/methods , Ubiquinone/metabolism
12.
J Pathol ; 219(2): 193-204, 2009 Oct.
Article En | MEDLINE | ID: mdl-19591199

Mitochondrial dysfunction has been implicated in the development and progression of multiple sclerosis (MS) lesions. Mitochondrial alterations might occur as a response to demyelination and inflammation, since demyelination leads to an increased energy demand in axons and could thereby affect the number, distribution and activity of mitochondria. We have studied the expression of mitochondrial proteins and mitochondrial enzyme activity in active demyelinating and chronic inactive MS lesions. Mitochondrial protein expression and enzyme activity in active and chronic inactive MS lesions was investigated using (immuno)histochemical and biochemical techniques. The number of mitochondria and their co-localization with axons and astrocytes within MS lesions and adjacent normal-appearing white matter (NAWM) was quantitatively assessed. In both active and inactive lesions we observed an increase in mitochondrial protein expression as well as a significant increase in the number of mitochondria. Mitochondrial density in axons and astrocytes was significantly enhanced in active lesions compared to adjacent NAWM, whereas a trend was observed in inactive lesions. Complex IV activity was strikingly up-regulated in MS lesions compared to control white matter and, to a lesser extent, NAWM. Finally, we demonstrated increased immunoreactivity of the mitochondrial stress protein mtHSP70 in MS lesions, particularly in astrocytes and axons. Our data indicate the occurrence of severe mitochondrial alterations in MS lesions, which coincides with enhanced mitochondrial oxidative stress. Together, these findings support a mechanism whereby enhanced density of mitochondria in MS lesions might contribute to the formation of free radicals and subsequent tissue damage.


Brain/pathology , Mitochondria/pathology , Multiple Sclerosis/pathology , Adult , Aged , Aged, 80 and over , Astrocytes/metabolism , Astrocytes/pathology , Axons/metabolism , Axons/pathology , Brain/metabolism , Electron Transport Complex IV/biosynthesis , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunoenzyme Techniques , Microscopy, Confocal , Middle Aged , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Oxidative Stress/physiology , Up-Regulation , Young Adult
13.
Ann Neurol ; 63(4): 473-81, 2008 Apr.
Article En | MEDLINE | ID: mdl-18306232

OBJECTIVE: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A-->G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome. METHODS: In muscle tissue of 24 patients with the 3243A-->G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A-->G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible. RESULTS: We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS-related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients. INTERPRETATION: The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity.


DNA, Mitochondrial/genetics , Energy Metabolism/genetics , Mitochondria, Muscle/genetics , Muscle, Skeletal/physiology , Mutation/genetics , Adenosine/genetics , Adolescent , Adult , Child , Child, Preschool , DNA, Mitochondrial/metabolism , Electron Transport/genetics , Female , Guanine/physiology , Humans , Infant , MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , MELAS Syndrome/metabolism , Male , Middle Aged , Mitochondria, Muscle/metabolism , Muscle, Skeletal/pathology
14.
Clin Chem ; 53(4): 729-34, 2007 Apr.
Article En | MEDLINE | ID: mdl-17332151

BACKGROUND: A reliable and sensitive complex I assay is an essential tool for the diagnosis of mitochondrial disorders, but current spectrophotometric assays suffer from low sensitivity, low specificity, or both. This deficiency is mainly due to the poor solubility of coenzyme-Q analogs and reaction mixture turbidity caused by the relatively high concentrations of tissue extract that are often required to measure complex I. METHODS: We developed a new spectrophotometric assay to measure complex I in mitochondrial fractions and applied it to muscle and cultured fibroblasts. The method is based on measuring 2,6-dichloroindophenol reduction by electrons accepted from decylubiquinol, reduced after oxidation of NADH by complex I. The assay thus is designed to avoid nonspecific NADH oxidation because electrons produced in these reactions are not accepted by decylubiquinone, resulting in high rotenone sensitivity. RESULTS: The assay was linear with time and amount of mitochondria. The K(m) values for NADH and 2,6-dichloroindophenol in muscle mitochondria were 0.04 and 0.017 mmol/L, respectively. The highest complex I activities were measured with 0.07 mmol/L decylubiquinone and 3.5 g/L bovine serum albumin. The latter was an essential component of the reaction mixture, increasing the solubility of decylubiquinone and rotenone. In patients with previously diagnosed complex I deficiencies, the new assay detected the complex I deficiencies in both muscle and fibroblasts. CONCLUSIONS: This spectrophotometric assay is reproducible, sensitive, and specific for complex I activity because of its high rotenone sensitivity, and it can be applied successfully to the diagnosis of complex I deficiencies.


Electron Transport Complex I/analysis , Fibroblasts/chemistry , Mitochondria/chemistry , Muscle, Skeletal/chemistry , Skin/chemistry , Cells, Cultured , Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Electron Transport Complex II/analysis , Humans , Mitochondrial Diseases/diagnosis , Muscle, Skeletal/cytology , Reproducibility of Results , Sensitivity and Specificity , Skin/cytology , Spectrophotometry
15.
Clin Chem ; 52(5): 860-71, 2006 May.
Article En | MEDLINE | ID: mdl-16543390

BACKGROUND: Diagnosis of mitochondrial disorders usually requires a muscle biopsy to examine mitochondrial function. We describe our diagnostic procedure and results for 29 patients with mitochondrial disorders. METHODS: Muscle biopsies were from 43 healthy individuals and 29 patients with defects in one of the oxidative phosphorylation (OXPHOS) complexes, the pyruvate dehydrogenase complex (PDHc), or the adenine nucleotide translocator (ANT). Homogenized muscle samples were used to determine the oxidation rates of radiolabeled pyruvate, malate, and succinate in the absence or presence of various acetyl Co-A donors and acceptors, as well as specific inhibitors of tricarboxylic acid cycle or OXPHOS enzymes. We determined the rate of ATP production from oxidation of pyruvate. RESULTS: Each defect in the energy-generating system produced a specific combination of substrate oxidation impairments. PDHc deficiencies decreased substrate oxidation reactions containing pyruvate. Defects in complexes I, III, and IV decreased oxidation of pyruvate plus malate, with normal to mildly diminished oxidation of pyruvate plus carnitine. In complex V defects, pyruvate oxidation improved by addition of carbonyl cyanide 3-chlorophenyl hydrazone, whereas other oxidation rates were decreased. In most patients, ATP production was decreased. CONCLUSION: The proposed method can be successfully applied to the diagnosis of defects in PDHc, OXPHOS complexes, and ANT.


Energy Metabolism , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Muscle, Skeletal/metabolism , Adenosine Triphosphate/biosynthesis , Adolescent , Adult , Biopsy , Carbon Radioisotopes , Carnitine/metabolism , Child , Child, Preschool , Female , Humans , Malates/metabolism , Male , Malonates/metabolism , Mitochondrial ADP, ATP Translocases/deficiency , Mitochondrial Diseases/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Succinic Acid/metabolism
...