Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(7): e17420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044411

ABSTRACT

Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species- and community-level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2 by increasing root biomass in species-scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.


Subject(s)
Climate Change , Droughts , Plant Roots , Tropical Climate , Plant Roots/growth & development , Plant Roots/metabolism , Trees/growth & development , Biomass , Nitrogen/metabolism , Forests , Floods , Fires
2.
New Phytol ; 243(1): 132-144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38742309

ABSTRACT

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Subject(s)
Forests , Mycorrhizae , Nitrogen , Nutrients , Phosphorus , Trees , Tropical Climate , Phosphorus/metabolism , Nitrogen/metabolism , Mycorrhizae/physiology , Nutrients/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Phosphoric Monoester Hydrolases/metabolism , Panama
3.
Can J Anaesth ; 71(5): 640-649, 2024 05.
Article in English | MEDLINE | ID: mdl-38548949

ABSTRACT

PURPOSE: Venous congestion is a pathophysiologic state that can result in organ dysfunction, particularly acute kidney injury (AKI). We sought to evaluate the feasibility of performing a definitive observational study to determine the impact of venous congestion quantified using point-of-care ultrasound (POCUS) in patients with septic shock. METHODS: We conducted a prospective observational feasibility study at two intensive care units (ICUs). We recruited adult patients with septic shock within 12 hr of ICU admission. Using the validated Venous Excess Ultrasound Score (VEXUS), we quantified venous congestion on day 1 and day 3 of ICU admission. The primary feasibility outcome was successful completion rate of the two VEXUS scores. We performed a survival analysis to quantify the hazard of renal replacement therapy (RRT). RESULTS: We enrolled 75 patients from January 2022 to January 2023. The success rate of completion for VEXUS scans was 94.5% (95% confidence interval [CI], 89.5 to 97.6). Severe venous congestion was present in 19% (14/75) of patients on ICU admission day 1 and in 16% (10/61) of patients on day 3. Venous congestion on ICU admission may be associated with a higher risk of requiring RRT (unadjusted hazard ratio, 3.35; 95% CI, 0.94 to 11.88; P = 0.06). CONCLUSIONS: It is feasible to conduct a definitive observational study exploring the association between venous congestion quantified with POCUS and clinical outcomes in patients with septic shock. We hypothesize that venous congestion may be associated with an increased hazard of receiving RRT.


RéSUMé: OBJECTIF: La congestion veineuse est un état physiopathologique qui peut entraîner un dysfonctionnement des organes, en particulier une insuffisance rénale aiguë (IRA). Nous avons cherché à évaluer la faisabilité de la réalisation d'une étude observationnelle définitive pour déterminer l'impact de la congestion veineuse quantifiée à l'aide de l'échographie ciblée (POCUS) chez des patient·es en choc septique. MéTHODE: Nous avons réalisé une étude de faisabilité observationnelle prospective dans deux unités de soins intensifs (USI). Nous avons recruté des patient·es adultes souffrant d'un choc septique dans les 12 heures suivant leur admission aux soins intensifs. À l'aide du score VEXUS (score d'échographie de l'excès veineux) validé, nous avons quantifié la congestion veineuse au jour 1 et au jour 3 de leur admission aux soins intensifs. Le principal critère de faisabilité était le taux de réussite des deux scores VEXUS. Nous avons réalisé une analyse de survie pour quantifier le risque de thérapie de substitution rénale (TSR). RéSULTATS: Nous avons recruté 75 patient·es de janvier 2022 à janvier 2023. Le taux de réussite des scores VEXUS était de 94,5 % (intervalle de confiance [IC] à 95 %, 89,5 à 97,6). Une congestion veineuse sévère était présente chez 19 % (14/75) des patient·es au jour 1 d'admission aux soins intensifs et chez 16 % (10/61) des patient·es au jour 3. La congestion veineuse lors de l'admission aux soins intensifs peut être associée à un risque plus élevé de nécessiter une TSR (rapport de risque non ajusté, 3,35; IC 95 %, 0,94 à 11,88; P = 0,06). CONCLUSION: Il est possible de mener une étude observationnelle définitive explorant l'association entre la congestion veineuse quantifiée par POCUS et les devenirs cliniques chez les patient·es en choc septique. Nous émettons l'hypothèse que la congestion veineuse peut être associée à un risque accru de recevoir une thérapie de substitution rénale.


Subject(s)
Acute Kidney Injury , Hyperemia , Shock, Septic , Adult , Humans , Shock, Septic/complications , Shock, Septic/diagnostic imaging , Prospective Studies , Hyperemia/diagnostic imaging , Hyperemia/complications , Point-of-Care Systems , Renal Replacement Therapy , Intensive Care Units , Acute Kidney Injury/therapy
4.
New Phytol ; 242(2): 351-371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416367

ABSTRACT

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Subject(s)
Ecosystem , Plant Roots , Nitrogen , Forests , Soil , Plants , Water , Tropical Climate , Trees
SELECTION OF CITATIONS
SEARCH DETAIL