Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(11): 7437-7445, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38742602

ABSTRACT

This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine-anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry.

2.
ACS Cent Sci ; 10(5): 1022-1032, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799663

ABSTRACT

Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating ß-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the ß-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.

3.
Inorg Chem ; 63(2): 1119-1126, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38174989

ABSTRACT

As the field of exfoliated van der Waals electronics grows to include complex heterostructures, the variety of available in-plane symmetries and geometries becomes increasingly valuable. In this work, we present an efficient chemical vapor transport synthesis of NbSe2I2 with the triclinic space group P1̅. This material contains Nb-Nb dimers and an in-plane crystallographic angle γ = 61.3°. We show that NbSe2I2 can be exfoliated down to few-layer and monolayer structures and use Raman spectroscopy to test the preservation of the crystal structure of exfoliated thin films. The crystal structure was verified by single-crystal and powder X-ray diffraction methods. Density functional theory calculations show triclinic NbSe2I2 to be a semiconductor with a band gap of around 1 eV, with similar band structure features for bulk and monolayer crystals. The physical properties of NbSe2I2 have been characterized by transport, thermal, optical, and magnetic measurements, demonstrating triclinic NbSe2I2 to be a diamagnetic semiconductor that does not exhibit any phase transformation below room temperature.

4.
bioRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37965205

ABSTRACT

Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating ß-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the ß-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.

5.
Organometallics ; 42(13): 1607-1614, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37928214

ABSTRACT

Complexes of the type (diphosphine)Ni(µ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(µ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(µ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(µ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(µ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(µ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(µ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(µ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(µ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.

6.
Inorg Chem ; 62(41): 16801-16809, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37787756

ABSTRACT

Herein, we report the synthesis, characterization, and electrocatalytic CO2 reduction activity of a series of Pd(II) complexes supported by tetradentate pyridinophane ligands. In particular, we focus on the electrocatalytic CO2 reduction activity of a Pd(II) complex supported by the mixed hard--soft donor ligand 2,11-dithia[3.3](2,6)pyridinophane (N2S2). We also provide spectroscopic evidence of a CO-induced decomposition pathway for the same catalyst, which provides insights into catalyst poisoning for molecular Pd CO2 reduction electrocatalysts.

7.
J Am Chem Soc ; 145(38): 20868-20873, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712762

ABSTRACT

Seleniferous oxyanions are groundwater contaminants from both anthropogenic and natural sources, while pure amorphous selenium nanoparticles have a variety of industrial applications. Biology can achieve the multicomponent 6 e-/8 H+ reduction of selenate to amorphous selenium using multiple metalloenzymes, like selenate and selenite reductase. Inspired by biology, we developed a new homogeneous system that can generate pure elemental selenium with no caustic waste. The stoichiometric reductions of selenate, selenite, and selenium dioxide with an iron(II) complex produced an iron(III)-oxo and red elemental selenium, the latter of which has been characterized by a variety of spectroscopic techniques. The catalytic reduction of SeO42- and SeO32- directly to amorphous Se and isolated as Se=PPh3 is reported with a turnover number of 12 and 7, respectively.

8.
Inorg Chem ; 62(7): 3067-3074, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36758187

ABSTRACT

The discovery of new low-dimensional transition-metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a quasi-one-dimensional (1D) material, (Nb4Se15I2)I2, were grown by chemical vapor transport, and the structure was solved by single-crystal X-ray diffraction (XRD). The structure has 1D (Nb4Se15I2)n chains along the [101] direction, with two I- ions per formula unit directly bonded to Nb5+. The other two I- ions are loosely coordinated and intercalated between the chains. Individual chains are chiral and stack along the b axis in opposing directions, giving space group P21/c. The phase purity and crystal structure were verified by powder XRD. Density functional theory calculations show (Nb4Se15I2)I2 to be a semiconductor with a direct band gap of around 0.6 eV. Resistivity measurements of bulk crystals and micropatterned devices demonstrate that (Nb4Se15I2)I2 has an activation energy of around 0.1 eV, and no anomaly or transition was seen upon cooling. Low-temperature XRD shows that (Nb4Se15I2)I2 does not undergo a structural phase transformation from room temperature to 8.2 K, unlike related compounds (NbSe4)nI (n = 2, 3, or 3.33), which all exhibit charge-density waves. This compound represents a well-characterized and valence-precise member of a diverse family of anisotropic transition-metal chalcogenides.

9.
Chem Commun (Camb) ; 58(53): 7360-7363, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35708524

ABSTRACT

An isolated Ni(II)-nitrosyl complex supported by the bulky tridentate 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPr3TACN) ligand was obtained from the reaction of a Ni(II) dimethyl complex with NOPF6, suggesting the in situ formation of a Ni(I) species that reacts with the resulting NO product. Use of a π-acceptor ancillary isocyanide ligand led to the isolation and characterization of an uncommon 5-coordinate Ni(I) complex supported by the iPr3TACN ligand and tert-butylisocyanide.


Subject(s)
Nickel , Organometallic Compounds , Heterocyclic Compounds , Ligands , Models, Molecular , Molecular Structure
10.
Nature ; 604(7904): 92-97, 2022 04.
Article in English | MEDLINE | ID: mdl-35134814

ABSTRACT

Fully automated synthetic chemistry would substantially change the field by providing broad on-demand access to small molecules. However, the reactions that can be run autonomously are still limited. Automating the stereospecific assembly of Csp3-C bonds would expand access to many important types of functional organic molecules1. Previously, methyliminodiacetic acid (MIDA) boronates were used to orchestrate the formation of Csp2-Csp2 bonds and were effective building blocks for automating the synthesis of many small molecules2, but they are incompatible with stereospecific Csp3-Csp2 and Csp3-Csp3 bond-forming reactions3-10. Here we report that hyperconjugative and steric tuning provide a new class of tetramethyl N-methyliminodiacetic acid (TIDA) boronates that are stable to these conditions. Charge density analysis11-13 revealed that redistribution of electron density increases covalency of the N-B bond and thereby attenuates its hydrolysis. Complementary steric shielding of carbonyl π-faces decreases reactivity towards nucleophilic reagents. The unique features of the iminodiacetic acid cage2, which are essential for generalized automated synthesis, are retained by TIDA boronates. This enabled Csp3 boronate building blocks to be assembled using automated synthesis, including the preparation of natural products through automated stereospecific Csp3-Csp2 and Csp3-Csp3 bond formation. These findings will enable increasingly complex Csp3-rich small molecules to be accessed via automated assembly.

11.
Acta Crystallogr C Struct Chem ; 78(Pt 2): 81-87, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35119385

ABSTRACT

The synthesis and characterization of the conjugated macrocycle trioxazolo[23]metacyclophane, C27H15N3O3 (M), is reported. The macrocycle was synthesized in three steps by the multicomponent van Leusen reaction and consists of meta-linked phenylenes connected through positions 4 and 5 of an oxazole heterocyclic ring. The molecular structure was investigated by NMR spectroscopy, mass spectrometry, gel permeation chromatography (GPC), and single-crystal X-ray crystallography. X-ray diffraction (XRD) analysis shows that M possesses a twisted saddle-like shape and interacts with nearby molecules by various π-π interactions. Absorption and emission spectroscopy and density functional theory (DFT) calculations were further used to study the electronic properties of M.


Subject(s)
Crystallography, X-Ray , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared
12.
J Am Chem Soc ; 144(4): 1534-1538, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35041427

ABSTRACT

The biosynthesis of the active site of the [FeFe]-hydrogenases (HydA1), the H-cluster, is of interest because these enzymes are highly efficient catalysts for the oxidation and production of H2. The biosynthesis of the [2Fe]H subcluster of the H-cluster proceeds from simple precursors, which are processed by three maturases: HydG, HydE, and HydF. Previous studies established that HydG produces an Fe(CO)2(CN) adduct of cysteine, which is the substrate for HydE. In this work, we show that by using the synthetic cluster [Fe2(µ-SH)2(CN)2(CO)4]2- active HydA1 can be biosynthesized without maturases HydG and HydE.


Subject(s)
Bacterial Proteins/metabolism , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Trans-Activators/metabolism , Catalysis , Catalytic Domain , Electron Spin Resonance Spectroscopy , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogenase/metabolism , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Oxidation-Reduction
13.
J Chem Phys ; 155(7): 071102, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418924

ABSTRACT

We report on the control of π-stacking modes (herringbone vs slipped-stack) and photophysical properties of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA), an anthracene-based organic semiconductor (OSC), by isosteric cocrystallization (i.e., the replacement of one functional group in a coformer with another of "similar" electronic structure) with 2,4,6-trihalophenols (3X-ph-OH, where X = Cl, Br, and I). Specifically, BP4VA organizes as slipped-stacks when cocrystallized with 3Cl-ph-OH and 3Br-ph-OH, while cocrystallization with 3I-ph-OH results in a herringbone mode. The photoluminescence and molecular frontier orbital energy levels of BP4VA were effectively modulated by the presence of 3X-ph-OH through cocrystallization. We envisage that the cocrystallization of OSCs with minimal changes in cocrystal formers can provide access to convenient structural and property diversification for advanced single-crystal electronics.

14.
Science ; 373(6551): 208-212, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244412

ABSTRACT

Dynamic effects are an important determinant of chemical reactivity and selectivity, but the deliberate manipulation of atomic motions during a chemical transformation is not straightforward. Here, we demonstrate that extrinsic force exerted upon cyclobutanes by stretching pendant polymer chains influences product selectivity through force-imparted nonstatistical dynamic effects on the stepwise ring-opening reaction. The high product stereoselectivity is quantified by carbon-13 labeling and shown to depend on external force, reactant stereochemistry, and intermediate stability. Computational modeling and simulations show that, besides altering energy barriers, the mechanical force activates reactive intramolecular motions nonstatistically, setting up "flyby trajectories" that advance directly to product without isomerization excursions. A mechanistic model incorporating nonstatistical dynamic effects accounts for isomer-dependent mechanochemical stereoselectivity.

15.
Angew Chem Int Ed Engl ; 60(38): 20744-20747, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34324230

ABSTRACT

Azadithiolate, a cofactor found in all [FeFe]-hydrogenases, is shown to undergo acid-catalyzed rearrangement. Fe2 [(SCH2 )2 NH](CO)6 self-condenses to give Fe6 [(SCH2 )3 N]2 (CO)17 . The reaction, which is driven by loss of NH4+ , illustrates the exchange of the amine group. X-ray crystallography reveals that three Fe2 (SR)2 (CO)x butterfly subunits interconnected by the aminotrithiolate [N(CH2 S)3 ]3- . Mechanistic studies reveal that Fe2 [(SCH2 )2 NR](CO)6 participate in a range of amine exchange reactions, enabling new methodologies for modifying the adt cofactor. Ru2 [(SCH2 )2 NH](CO)6 also rearranges, but proceeds further to give derivatives with Ru-alkyl bonds Ru6 [(SCH2 )3 N][(SCH2 )2 NCH2 ]S(CO)17 and [Ru2 [(SCH2 )2 NCH2 ](CO)5 ]2 S.


Subject(s)
Aza Compounds/metabolism , Coordination Complexes/metabolism , Hydrogenase/metabolism , Rubidium/metabolism , Toluene/analogs & derivatives , Aza Compounds/chemistry , Coordination Complexes/chemistry , Models, Molecular , Molecular Structure , Rubidium/chemistry , Toluene/chemistry , Toluene/metabolism
16.
J Am Chem Soc ; 143(27): 10065-10069, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34181856

ABSTRACT

The homoleptic rhodium pyridine complex [Rh(py)4]+ ([1]+) is prepared from simple precursors. Lacking good π-acceptor ligands but being sterically protected, [1]+ reversibly oxidizes to colorless [Rh(py)4(thf)2]2+. This monomeric S = 1/2 Rh(II) complex activates H2 to give [HRh(py)4L]2+, which can also be generated by protonation of [1]+. The Rh(III)-H bond is weak, being susceptible to H atom abstraction as well as deprotonation. These results underpin a novel catalytic system for the oxidation of H2 by ferrocenium.

17.
Front Chem ; 9: 620017, 2021.
Article in English | MEDLINE | ID: mdl-33996739

ABSTRACT

This work presents the first transition metal-free synthesis of oxygen-linked aromatic polymers by integrating iterative exponential polymer growth (IEG) with nucleophilic aromatic substitution (SNAr) reactions. Our approach applies methyl sulfones as the leaving groups, which eliminate the need for a transition metal catalyst, while also providing flexibility in functionality and configuration of the building blocks used. As indicated by 1) 1H-1H NOESY NMR spectroscopy, 2) single-crystal X-ray crystallography, and 3) density functional theory (DFT) calculations, the unimolecular polymers obtained are folded by nonclassical hydrogen bonds formed between the oxygens of the electron-rich aromatic rings and the positively polarized C-H bonds of the electron-poor pyrimidine functions. Our results not only introduce a transition metal-free synthetic methodology to access precision polymers but also demonstrate how interactions between relatively small, neutral aromatic units in the polymers can be utilized as new supramolecular interaction pairs to control the folding of precision macromolecules.

18.
Chem Commun (Camb) ; 57(41): 5079-5081, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33890601

ABSTRACT

The reaction of Fe2S2(CO)6 and PPh3 affords Fe2S2(CO)4(PPh3)2 by an unprecedented mechanism involving the intermediacy of SPPh3 and Fe2S(CO)6(PPh3)2.

19.
Inorg Chem ; 60(6): 3917-3926, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33650855

ABSTRACT

Density functional theory (DFT) calculations on Fe2S2(CO)6-2n(PMe3)2n for n = 0, 1, and 2 reveal that the most electron-rich derivatives (n = 2) exist as diferrous disulfides lacking an S-S bond. The thermal interconversion of the FeII2(S)2 and FeI2(S2) valence isomers is symmetry-forbidden. Related electron-rich diiron complexes [Fe2S2(CN)2(CO)4]2- of an uncertain structure are implicated in the biosynthesis of [FeFe]-hydrogenases. Several efforts to synthesize electron-rich derivatives of Fe2(µ-S2)(CO)6 (1) are described. First, salts of iron persulfido cyanides [Fe2(µ-S2)(CO)5(CN)]- and [Fe2(µ-S2)(CN)(CO)4(PPh3)]- were prepared by the reactions of NaN(tms)2 with 1 and Fe2(µ-S2)(CO)5(PPh3), respectively. Alternative approaches to electron-rich diiron disulfides targeted Fe2(µ-S2)(CO)4(diphosphine). Whereas the preparation of Fe2(µ-S2)(CO)4(dppbz) was straightforward, that of Fe2(µ-S2)(CO)4(dppv) required an indirect route involving the oxidation of Fe2(µ-SH)2(CO)4(dppv) (dppbz = C6H4-1,2-(PPh2)2, dppv = cis-C2H2(PPh2)2). DFT calculations indicate that the oxidation of Fe2(µ-SH)2(CO)4(dppv) produces singlet diferrous disulfide Fe2(µ-S)2(CO)4(dppv), which is sufficiently long-lived as to be trapped by ethylene. The reaction of 1 and dppv mainly afforded Fe2(µ-SCH=CHPPh2)(µ-SPPh2)(CO)5, implicating a S-centered reaction.

20.
Organometallics ; 40(19): 3306-3312, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-37933322

ABSTRACT

One of the more active areas in bioorganometallic chemistry is the preparation and reactivity studies of active site mimics of the [NiFe]-hydrogenases. One area of particular recent progress involves reactions that interconvert Ni(µ-X)Fe centers for X = OH, H, CO, as described by Song et al. Such reactions illustrate new ways to access intermediates related to the Ni-R and Ni-SI states of the enzyme. Most models are derivatives of the type (diphosphine)Ni(SR)2Fe(CO)3-n(PR'3)n. In recent work, the methodology has been generalized to include FeII(diphosphine) derivatives of Ni(N2S2), where N2S22- is the tetradentate diamine-dithiolate (CH2N(CH3)CH2CH2S-)2. Indeed, models based on Ni(N2S2) have proven valuable, but these studies also highlight challenges in working with heterobimetallic complexes, specifically the tendency of some such Ni-Fe complexes to convert to homometalliic Ni-Ni derivatives. This kind of problem is not readily detected by X-ray crystallography. With this caution in mind, we argue that one series of complexes recently described in this journal are almost certainly misassigned.

SELECTION OF CITATIONS
SEARCH DETAIL
...