Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Nano Lett ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141575

ABSTRACT

Antiferromagnets (AFMs) are ideal materials to boost neuromorphic computing toward the ultrahigh speed and ultracompact integration regime. However, developing a suitable AFM neuromorphic memory remains an aspirational but challenging goal. In this work, we construct such a memory based on the CoO/Pt heterostructure, in which the collinear insulating AFM CoO shows a strong perpendicular anisotropy facilitating its electrical readout and writing. Utilizing the unique nonlinear response and bipolar fading memory properties of the device, we demonstrate a multidimensional reservoir computing beyond the traditional binary paradigm. These results are expected to pave the way toward next-generation fast and massive neuromorphic computing.

2.
Sci Rep ; 14(1): 18313, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112496

ABSTRACT

Object detector based on fully convolutional network achieves excellent performance. However, existing detection algorithms still face challenges such as low detection accuracy in dense scenes and issues with occlusion of dense targets. To address these two challenges, we propose an Global Remote Feature Modulation End-to-End (GRFME2E) detection algorithm. In the feature extraction phase of our algorithm, we introduces the Concentric Attention Feature Pyramid Network (CAFPN). The CAFPN captures direction-aware and position-sensitive information, as well as global remote dependencies of features in deep layers by combining Coordinate Attention and Multilayer Perceptron. These features are used to modulate the front-end shallow features, enhancing inter-layer feature adjustment to obtain comprehensive and distinctive feature representations.In the detector part, we introduce the Two-Stage Detection Head (TS Head). This head employs the First-One-to-Few (F-O2F) module to detect slightly or unobstructed objects. Additionally, it uses masks to suppress already detected instances, and then feeds them to the Second-One-to-Few (S-O2F) module to identify those that are heavily occluded. The results from both detection stages are merged to produce the final output, ensuring the detection of objects whether they are slightly obscured, unobstructed, or heavily occluded. Experimental results on the pig detection dataset demonstrate that our GRFME2E achieves an accuracy of 98.4%. In addition, more extensive experimental results show that on the CrowdHuman dataset, our GRFME2E achieves 91.8% and outperforms other methods.

3.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111024, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173872

ABSTRACT

Myostatin (MSTN) plays an important role in muscle development in animals, especially for mammals and fishes. However, little information has been reported on the regulation of MSTN in marine invertebrates, such as bivalves. In the present study, we cloned the MSTN promoter sequence of Yesso scallop Patinopecten yessoensis, identifying 4 transcription start sites, eleven TATA boxes and one E-box. Additionally, transcription factor binding sites, including myocyte enhancer factor 2 (MEF2) and POU homeodomain protein, were identified. The interaction between the MSTN promoter and MEF2 was analyzed to reveal the transcriptional activity of different fragment sizes of promoters through the dual-luciferase reporter assays. The highest transcriptional activity was found in recombinant plasmids with the most MEF2 binding sites, indicating that this transcription factor upregulates MSTN in Yesso scallop. This study provides new insight into the regulation of muscle growth and development in this species.

4.
Front Surg ; 11: 1387246, 2024.
Article in English | MEDLINE | ID: mdl-39170098

ABSTRACT

Background: Portal vein tumor thrombus (PVTT) is a major risk factor of recurrence of hepatocellular carcinoma (HCC) after hepatectomy. Whether postoperative adjuvant immunotherapy and molecular targeted therapy (I-O and MTT) is effective in reducing the risk of recurrence of HCC with minimal portal invasion after hepatectomy and improving prognosis is unknown. Methods: We collected the data of HCC with Vp1 or Vp2 PVTT patients who underwent hepatectomy at our center between January 2019 and June 2022 from the hospital database. We utilized propensity score matching (PSM) to establish a 1:1 match between the postoperative group treated with I-O and MTT and the postoperative group without I-O and MTT. To compare the recurrence-free survival (RFS) and overall survival (OS) between the two groups, we employed the Kaplan-Meier method. Additionally, we conducted Cox regression analysis to identify the prognostic factors that influence patient prognosis. To account for different high-risk factors, subgroup analyses were carried out. Results: Among the 189 patients included in the study, 42 patients received postoperative adjuvant I-O and MTT. After PSM, the 1, 2-years RFS were 59.2%, 21.3% respectively in the I-O and MTT group and 40.8%, 9.6% respectively in the non-I-O and MTT group. The median RFS was 13.2 months for the I-O and MTT group better than 7.0 months for the non-I-O and MTT group (P = 0.028). 1, 2-years OS were 89.8%, 65.8% respectively in the I-O and MTT group and 42.4%, 27.7% respectively in the non-I-O and MTT group. The median OS was 23.5 months for the I-O and MTT group better than 17.2 months for the non-I-O and MTT group (P = 0.027). Multivariate analysis showed that postoperative adjuvant I-O and MTT was a prognostic protective factor associated with OS and RFS. The most frequent AE observed in this study was pruritus, and rare AEs included decreased platelet, hypothyroidism, proteinuria, myocarditis and hypoadrenocorticism. The incidence of GRADE ≥3 AE with no deaths recorded. Conclusion: The study suggested that postoperative adjuvant I-O and MTT strategy was beneficial to improve the prognosis of HCC patients with PVTT patients, while the therapy was safe and reliable.

5.
Nanoscale ; 16(28): 13694-13702, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38967458

ABSTRACT

Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (001̄), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (001̄) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (001̄) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (001̄) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.

6.
Nano Lett ; 24(30): 9186-9194, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012034

ABSTRACT

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

7.
Environ Int ; 190: 108890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39033732

ABSTRACT

BACKGROUND: The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS: Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS: Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION: Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.


Subject(s)
Allergens , Brain Stem , Particulate Matter , Rhinitis, Allergic , Spleen , TRPV Cation Channels , Brain Stem/metabolism , Rhinitis, Allergic/metabolism , Animals , Allergens/adverse effects , TRPV Cation Channels/metabolism , Spleen/metabolism , Male , Ovalbumin , Air Pollutants/adverse effects , Mice
8.
Int J Biol Macromol ; 277(Pt 2): 134078, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038575

ABSTRACT

Herbicides are essential for farmers to control weed. However, prolonged use of herbicides has caused the development of herbicide resistance in weeds. Here, the resistant Echinochloa crus-galli (RL5) was obtained by continuous treatment with metamifop for five generations in paddy fields. RL5 plants showed a 13.7-fold higher resistance to metamifop compared to susceptible E. crus-galli (SL5) plants. Pre-treatment with GST inhibitor (NBD-Cl) significantly increased the susceptibility of RL5 plants to metamifop. Faster metamifop metabolism and higher GST activity in RL5 plants than in SL5 plants were also confirmed, highlighting the role of GST in metabolic resistance. RNA-Seq analysis identified EcGSTU23 as a candidate gene, and this gene was up-regulated in RL5 and field-resistant E. crus-galli plants. Furthermore, the EcGSTU23 gene was overexpressed in the transgenic EcGSTU23-Maize, and the EcGSTU23-Maize showed resistance to metamifop. In vitro metabolic studies also revealed that the purified EcGSTU23 displayed catalytic activity in glutathione (GSH) conjugation, and metamifop was rapidly metabolized in the co-incubation system containing EcGSTU23 protein. These results provide direct experimental evidence of EcGSTU23's involvement in the metabolic resistance of E. crus-galli to metamifop. Understanding the resistance mechanism can help in devising effective strategies to combat herbicide resistance and breeding of genetically modified herbicide resistant crops.


Subject(s)
Echinochloa , Glutathione Transferase , Herbicide Resistance , Echinochloa/drug effects , Echinochloa/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Herbicide Resistance/genetics , Herbicides/pharmacology , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Phys Rev E ; 109(5-1): 054113, 2024 May.
Article in English | MEDLINE | ID: mdl-38907411

ABSTRACT

We discover that quantum dynamical tunneling, occurring between phase space regions in a classically forbidden way, can break conserved quantities. We rigorously prove that a conserved quantity in a class of typical pseudointegrable systems can be broken quantum mechanically. We then numerically compute the uncertainties of this broken conserved quantity, which remain nonzero for up to 10^{5} eigenstates and exhibit universal distributions similar to energy level statistics. Furthermore, all the eigenstates with large uncertainties show the superpositions of regular orbits with different values of the conserved quantity, showing definitive manifestation of dynamical tunneling. A random matrix model is constructed to successfully reproduce the level statistics of pseudointegrable systems.

10.
Dalton Trans ; 53(24): 10065-10069, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38847200

ABSTRACT

Heteroleptic, bimetallic (Mg/K) cyclopentadienyl complexes (2-4) were synthesized by the reaction of the Mg-Mg-bonded compound [K(THF)3]2[LMg-MgL] (1, L = [(2,6-iPr2C6H3)NC(CH3)]22-) with cyclopentadiene derivatives, 6,6-dimethylfulvene, 6-(dimethylamino)fulvene, or 1,2,3,4-tetramethyl-1,3-cyclopentadiene. The reactions proceed through diverse pathways, including hydrogen abstraction, C-C coupling, and dehydrogenation, depending on the property of the polyene substrate, thus providing an access to alkali/alkaline earth metal cyclopentadienyl complexes.

11.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893321

ABSTRACT

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42- electrostatics and the ion-dipole interaction of the lithium-receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

12.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893834

ABSTRACT

Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.

13.
Nano Lett ; 24(26): 8189-8197, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904278

ABSTRACT

IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.

14.
Seizure ; 119: 17-27, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768522

ABSTRACT

PURPOSE: To establish and validate a novel nomogram based on clinical characteristics and [18F]FDG PET radiomics for the prediction of postsurgical seizure freedom in patients with temporal lobe epilepsy (TLE). PATIENTS AND METHODS: 234 patients with drug-refractory TLE patients were included with a median follow-up time of 24 months after surgery. The correlation coefficient redundancy analysis and LASSO Cox regression were used to characterize risk factors. The Cox model was conducted to develop a Clinic-PET nomogram to predict the relapse status in the training set (n = 171). The nomogram's performance was estimated through discrimination, calibration, and clinical utility. The prognostic prediction model was validated in the test set (n = 63). RESULTS: Eight radiomics features were selected to assess the radiomics score (radscore) of the operation side (Lat_radscore) and the asymmetric index (AI) of the radiomics score (AI_radscore). AI_radscor, Lat_radscor, secondarily generalized seizures (SGS), and duration between seizure onset and surgery (Durmon) were significant predictors of seizure-free outcomes. The final model had a C-index of 0.68 (95 %CI: 0.59-0.77) for complete freedom from seizures and time-dependent AUROC was 0.65 at 12 months, 0.65 at 36 months, and 0.59 at 60 months in the test set. A web application derived from the primary predictive model was displayed for economic and efficient use. CONCLUSIONS: A PET-based radiomics nomogram is clinically promising for predicting seizure outcomes after temporal lobe epilepsy surgery.


Subject(s)
Epilepsy, Temporal Lobe , Nomograms , Positron-Emission Tomography , Humans , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Male , Female , Adult , Young Adult , Fluorodeoxyglucose F18 , Middle Aged , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Treatment Outcome , Seizures/diagnostic imaging , Seizures/surgery , Prognosis , Follow-Up Studies , Adolescent , Retrospective Studies , Radiomics
15.
Angew Chem Int Ed Engl ; 63(33): e202406946, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38802316

ABSTRACT

Control of phosphate capture and release is vital in environmental, biological, and pharmaceutical contexts. However, the binding of trivalent phosphate (PO4 3-) in water is exceptionally difficult due to its high hydration energy. Based on the anion coordination chemistry of phosphate, in this study, four charge-neutral tripodal hexaurea receptors (L1-L4), which were equipped with morpholine and polyethylene glycol terminal groups to enhance their solubility in water, were synthesized to enable the pH-triggered phosphate binding and release in aqueous solutions. Encouragingly, the receptors were found to bind PO4 3- anion in a 1 : 1 ratio via hydrogen bonds in 100 % water solutions, with L1 exhibiting the highest binding constant (1.2×103 M-1). These represent the first neutral anion ligands to bind phosphate in 100 % water and demonstrate the potential for phosphate capture and release in water through pH-triggered mechanisms, mimicking native phosphate binding proteins. Furthermore, L1 can also bind multiple bioavailable phosphate species, which may serve as model systems for probing and modulating phosphate homeostasis in biological and biomedical researches.


Subject(s)
Anions , Phosphates , Water , Phosphates/chemistry , Water/chemistry , Anions/chemistry , Hydrogen-Ion Concentration , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Hydrogen Bonding , Molecular Structure , Binding Sites
16.
BMC Pregnancy Childbirth ; 24(1): 351, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720272

ABSTRACT

BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.


Subject(s)
Abortion, Spontaneous , Biomarkers , Embryo Transfer , MicroRNAs , Humans , Female , Pregnancy , MicroRNAs/blood , Adult , Biomarkers/blood , Abortion, Spontaneous/blood , Embryo Implantation , Machine Learning
17.
Animals (Basel) ; 14(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731380

ABSTRACT

Mitochondrial genomes are playing an increasingly important role in molluscan taxonomy, germplasm, and evolution studies. The first complete mitochondrial genome of the commercial big brown mactra clam, Mactra grandis, was characterized using Illumina next-generation sequencing in this study. The 17,289 bp circular genome has a typical gene organization of 13 protein-coding genes (PCGs), 2 rRNAs, and 22 tRNAs, with an obvious (A + T)-bias of 64.54%. All PCGs exhibited a homogeneous bias in nucleotide composition with a (A + T)-bias, a positive GC skew, and a negative AT skew. Results of phylogenetic analysis showed that Mactra grandis was most closely related to Mactra cygnus. The functional gene arrangement of the two species was identical but different from other Mactra species. The congeneric relationships among Mactra species were demonstrated by genetic distance analysis. Additionally, the selective pressure analysis suggested that cox1 was highly efficient for discriminating closely related species in genus Mactra, while nad2 was the most appropriate marker for population genetic analysis.

18.
Angew Chem Int Ed Engl ; 63(27): e202400989, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38623921

ABSTRACT

Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.

19.
Front Neurol ; 15: 1377538, 2024.
Article in English | MEDLINE | ID: mdl-38654734

ABSTRACT

Background: This study aimed to investigate the clinical application of 18F-FDG PET radiomics features for temporal lobe epilepsy and to create PET radiomics-based machine learning models for differentiating temporal lobe epilepsy (TLE) patients from healthy controls. Methods: A total of 347 subjects who underwent 18F-FDG PET scans from March 2014 to January 2020 (234 TLE patients: 25.50 ± 8.89 years, 141 male patients and 93 female patients; and 113 controls: 27.59 ± 6.94 years, 48 male individuals and 65 female individuals) were allocated to the training (n = 248) and test (n = 99) sets. All 3D PET images were registered to the Montreal Neurological Institute template. PyRadiomics was used to extract radiomics features from the temporal regions segmented according to the Automated Anatomical Labeling (AAL) atlas. The least absolute shrinkage and selection operator (LASSO) and Boruta algorithms were applied to select the radiomics features significantly associated with TLE. Eleven machine-learning algorithms were used to establish models and to select the best model in the training set. Results: The final radiomics features (n = 7) used for model training were selected through the combinations of the LASSO and the Boruta algorithms with cross-validation. All data were randomly divided into a training set (n = 248) and a testing set (n = 99). Among 11 machine-learning algorithms, the logistic regression (AUC 0.984, F1-Score 0.959) model performed the best in the training set. Then, we deployed the corresponding online website version (https://wane199.shinyapps.io/TLE_Classification/), showing the details of the LR model for convenience. The AUCs of the tuned logistic regression model in the training and test sets were 0.981 and 0.957, respectively. Furthermore, the calibration curves demonstrated satisfactory alignment (visually assessed) for identifying the TLE patients. Conclusion: The radiomics model from temporal regions can be a potential method for distinguishing TLE. Machine learning-based diagnosis of TLE from preoperative FDG PET images could serve as a useful preoperative diagnostic tool.

20.
J Am Chem Soc ; 146(15): 10908-10916, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579155

ABSTRACT

Self-assembly of sophisticated polyhedral cages has drawn much attention because of their elaborate structures and potential applications. Herein, we report the anion-coordination-driven assembly of the first A8L12 (A = anion, L = ligand) octanuclear cubic structures from phosphate anion and p-xylylene-spaced bis-bis(urea) ligands via peripheral templating of countercations (TEA+ or TPA+). By attaching terminal aryl rings (phenyl or naphthyl) to the ligand through a flexible (methylene) linker, these aryls actively participate in the formation of plenty of "aromatic pockets" for guest cation binding. As a result, multiple peripheral guests (up to 22) of suitable size are bound on the faces and vertices of the cube, forming a network of cation-π interactions to stabilize the cube structure. More interestingly, when chiral ligands were used, either diastereomers of mixed Λ- and Δ-configurations (with TEA+ countercation) for the phosphate coordination centers or enantiopure cubes (with TPA+) were formed. Thus, the assembly and chirality of the cube can be modulated by remote terminal groups and peripheral templating tetraalkylammonium cations.

SELECTION OF CITATIONS
SEARCH DETAIL