Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Eur J Med Chem ; 276: 116649, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972078

ABSTRACT

Guided by the X-ray cocrystal structure of the lead compound 4a, we developed a series of thieno[3,2-d]pyrimidine and heterocyclic fused pyrimidines demonstrating potent antiproliferative activity against four tumor cell lines. Two analogs, 13 and 25d, exhibited IC50 values around 1 nM and overcame P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). At low concentrations, 13 and 25d inhibited both the colony formation of SKOV3 cells in vitro and tubulin polymerization. Furthermore, mechanistic studies showed that 13 and 25d induced G2/M phase arrest and apoptosis in SKOV3 cells, as well as dose-dependent inhibition of tumor cell migration and invasion at low concentrations. Most notably, the X-ray cocrystal structures of compounds 4a, 25a, and the optimal molecule 13 in complex with tubulin were elucidated. This study identifies thieno[3,2-d]pyrimidine and heterocyclic fused pyrimidines as representatives of colchicine-binding site inhibitors (CBSIs) with potent antiproliferative activity.

2.
Anal Chem ; 96(26): 10705-10713, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38910291

ABSTRACT

Circulating tumor cells (CTCs) serve as important biomarkers in the liquid biopsy of hepatocellular carcinoma (HCC). Herein, a homogeneous dual fluorescence indicators aptasensing strategy is described for CTCs in HCC, with the core assistance of a steric hindrance-mediated enzymatic reaction. CTCs in the sample could specifically bind to a 5'-biotin-modified glypican-3 (GPC3) aptamer and remove the steric hindrance formed by the biotin-streptavidin system. This influences the efficiency of the terminal deoxynucleotidyl transferase enzymatic reaction. Then, methylene blue (MB) was introduced to react with the main product poly cytosine (polyC) chain, and trivalent cerium ion (Ce3+) was added to react with the byproduct pyrophosphate to form fluorescent pyrophosphate cerium coordination polymeric nanoparticles. Finally, the CTCs were quantified by dual fluorescence indicators analysis. Under optimized conditions, the linear range was 5 to 104 cells/mL, and the limits of detection reached 2 cells/mL. Then, 40 clinical samples (15 healthy and 25 HCC patients) were analyzed. The receiver operating characteristic curve analysis revealed an area under the curve of 0.96, a sensitivity of 92%, and a specificity of 100%. Therefore, this study established a sensitive and accurate CTCs sensing system for clinical HCC patients, promoting early tumor diagnosis.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Hepatocellular , Fluorescent Dyes , Liver Neoplasms , Neoplastic Cells, Circulating , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Glypicans/metabolism , Biosensing Techniques
3.
Eur J Med Chem ; 274: 116521, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820853

ABSTRACT

Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11ß-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.


Subject(s)
Cardiovascular Diseases , Cytochrome P-450 CYP11B2 , Small Molecule Libraries , Humans , Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 CYP11B2/metabolism , Structure-Activity Relationship , Cardiovascular Diseases/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Animals , Molecular Structure
4.
Research (Wash D C) ; 7: 0352, 2024.
Article in English | MEDLINE | ID: mdl-38711475

ABSTRACT

In this study, we systematically investigated the interactions between Cu2+ and various biomolecules, including double-stranded DNA, Y-shaped DNA nanospheres, the double strand of the hybridization chain reaction (HCR), the network structure of cross-linked HCR (cHCR), and small molecules (PPi and His), using Cu2+ as an illustrative example. Our research demonstrated that the coordination between Cu2+ and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu2+ but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration. Building upon these findings, we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe. We applied this approach to the analysis of circulating tumor cells, with the lung cancer cell line A549 serving as a representative model. Our assay, utilizing both a fluorometer and a handheld detector, achieved impressive detection limits of ag/ml and single-cell levels for mucin 1 and A549 cells, and this approach was successfully validated using 46 clinical samples, yielding 100% specificity and 86.5% sensitivity. Consequently, our strategy has paved the way for more portable and precise disease diagnosis.

5.
Drug Discov Today ; 29(6): 103995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670255

ABSTRACT

Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.


Subject(s)
Antineoplastic Agents , Calcium Channel Blockers , Calcium Channels , Epithelial-Mesenchymal Transition , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium Channels/metabolism , Animals , Epithelial-Mesenchymal Transition/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Drug Development/methods , Drug Resistance, Neoplasm , Calcium/metabolism
6.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38621341

ABSTRACT

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Subject(s)
Aptamers, Nucleotide , B7-H1 Antigen , Biosensing Techniques , Doxorubicin , Electrochemical Techniques , Exosomes , Lung Neoplasms , Humans , Biosensing Techniques/methods , Exosomes/chemistry , Electrochemical Techniques/methods , Lung Neoplasms/chemistry , Aptamers, Nucleotide/chemistry , Doxorubicin/chemistry , DNA/chemistry , Methylene Blue/chemistry , Nanospheres/chemistry , G-Quadruplexes
7.
Eur J Med Chem ; 268: 116282, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430853

ABSTRACT

The Son of Sevenless 1 (SOS1) guanine nucleotide exchange factor, prevalent across eukaryotic species, plays a pivotal role in facilitating the attachment of RAS protein to GTP, thereby regulating the activation of intracellular RAS proteins. This regulation is part of a feedback mechanism involving SOS1, which allows both activators and inhibitors of SOS1 to exert control over downstream signaling pathways, demonstrating potential anti-tumor effects. Predominantly, small molecule modulators that target SOS1 focus on a hydrophobic pocket within the CDC25 protein domain. The effectiveness of these modulators largely depends on their ability to interact with specific amino acids, notably Phe890 and Tyr884. This interaction is crucial for influencing the protein-protein interaction (PPI) between RAS and the catalytic domain of SOS1. Currently, most small molecule modulators targeting SOS1 are in the preclinical research phase, with a few advancing to clinical trials. This progression raises safety concerns, making the assurance of drug safety a primary consideration alongside the enhancement of efficacy in the development of SOS1 modulators. This review encapsulates recent advancements in the chemical categorization of SOS1 inhibitors and activators. It delves into the evolution of small molecule modulation targeting SOS1 and offers perspectives on the design of future generations of selective SOS1 small molecule modulators.


Subject(s)
Nuclear Family , Signal Transduction , Drug Discovery , Catalytic Domain
8.
Cancer Biol Ther ; 25(1): 2322207, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38465665

ABSTRACT

BACKGROUND: CASC21 was reported to be a hotspot gene in cervical cancer. The relationship between CASC21 genetic polymorphisms and cervical cancer has not been reported. Genetic factors influence the occurrence of cervical cancer. Thus, we explored the correlation between CASC21 polymorphisms and cervical cancer. METHODS: A total of 973 participants within 494 cervical cancer cases and 479 healthy controls were recruited. Five single nucleotide polymorphisms (SNPs) in the CASC21 gene were genotyped using the Agena MassARRAY platform. Chi-squared test, logistic regression analysis, odds ratio (OR), multifactor dimensionality reduction (MDR), and 95% confidence interval (95%CI) were used for data analysis. RESULTS: In the overall analysis, rs16902094 (p = .014, OR = 1.86, 95% CI = 1.12-3.08) and rs16902104 (p = .014, OR = 1.86, 95% CI = 1.12-3.09) had the risk-increasing correlation with the occurrence of cervical cancer. Stratification analysis showed that rs16902094 and rs16902104 were still associated with cervical cancer risk in the subgroups with age > 51, BMI < 24 kg/m2, smokers, and patients with cervical squamous cell carcinoma. MDR analysis displayed that rs16902094 (.49%) and rs16902104 (.52%) were the main influential attribution factor for cervical cancer risk. CONCLUSION: Our finding firstly determined that two CASC21 SNPs (rs16902094, rs16902104) were associated with an increased risk of cervical cancer, which adds to our knowledge regarding the effect of CASC21 on cervical carcinogenesis.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Genetic Predisposition to Disease , Carcinoma, Squamous Cell/genetics , Genotype , Polymorphism, Single Nucleotide , Case-Control Studies , China/epidemiology
9.
J Med Chem ; 67(4): 2777-2801, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323982

ABSTRACT

Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor
10.
ACS Nano ; 18(6): 5017-5028, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38305181

ABSTRACT

Herein, we propose a paper-based laboratory via enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs) assisted single-cell-level analysis (PLACS). This method allowed for the rapid detection of mucin 1 and trace circulating tumor cells (CTCs) in the peripheral blood of lung cancer patients. Initially, an independently developed method requiring one centrifuge, two reagents (lymphocyte separation solution and erythrocyte lysate), and a three-step, 45 min sample pretreatment was employed. The core of the detection approach consisted of two competitive selective identifications: copper sulfide nanoparticles (CuS NPs) to C-Ag+-C and Ag+, and dual quantum dots (QDs) to Cu2+ and CuS NPs. To facilitate multimodal point-of-care testing (POCT), we integrated solution visualization, test strip length reading, and a self-developed hand-held fluorometer readout. These methods were detectable down to ag/mL of mucin 1 concentration and the single-cell level. Forty-seven clinical samples were assayed by fluorometer, yielding 94% (30/32) sensitivity and 100% (15/15) specificity with an area under the curve (AUC) of 0.945. Nine and 15 samples were retested by a test strip and hand-held fluorometer, respectively, with an AUC of 0.95. All test results were consistent with the clinical imaging and the folate receptor (FR)-PCR kit findings, supporting its potential in early diagnosis and postoperative monitoring.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Mucin-1/genetics , Liquid Biopsy , Nucleic Acid Amplification Techniques
11.
Biosens Bioelectron ; 249: 116030, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38241796

ABSTRACT

This study presents a straightforward efficient technique for extracting circulating tumor cells (CTCs) and a rapid one-step electrochemical method (45 min) for detecting lung cancer A549 cells based on the specific recognition of mucin 1 using aptamers and the modulation of Cu2+ electrochemical signals by biomolecules. The CTCs separation and enrichment process can be completed within 45 min using lymphocyte separation solution (LSS), erythrocyte lysis solution (ELS), and three centrifugations. Besides, the influence of various biomolecules on Cu2+ electrochemical signals is comprehensively discussed, with DNA nanospheres selected as the medium. Three single-stranded DNA sequences were hybridized to form Y-shaped DNA (Y-DNA), creating DNA nanospheres. Upon specific capture of mucin 1 by the aptamer, most DNA nanospheres could form complexes with Cu2+ (DNA nanosphere-Cu2+), significantly reducing the concentration of free Cu2+. Our approach yielded the limit of detection (LOD) of 2 ag/mL for mucin 1 and 1 cell/mL for A549 cells. 39 clinical blood samples were used for further validation, yielding results closely correlated with pathological, computed tomography (CT) scan findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve displayed an area under the curve (AUC) value of 0.960, demonstrating 100% specificity and 93.1% sensitivity for the assay. Taken together, our findings indicate that this straightforward and efficient pretreatment and rapid, highly sensitive electrochemical assay holds great promise for liquid biopsy-based tumor detection using CTCs.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Lung Neoplasms/diagnosis , Mucin-1/genetics , Biosensing Techniques/methods , DNA/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods
12.
Front Immunol ; 14: 1132939, 2023.
Article in English | MEDLINE | ID: mdl-37377967

ABSTRACT

Introduction: Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods: GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results: GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions: Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , Disease Models, Animal , Lipopolysaccharides/pharmacology , Asthma/metabolism , Lung/pathology , Respiratory Hypersensitivity/metabolism , Inflammation/metabolism , Cytokines/metabolism , Collagen/metabolism , Transferases
13.
J Med Chem ; 66(10): 6697-6714, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37145846

ABSTRACT

A series of novel indole analogues were discovered as colchicine-binding site inhibitors of tubulin. Among them, 3a exhibited the highest antiproliferative activity (average IC50 = 4.5 nM), better than colchicine (IC50 = 65.3 nM). The crystal structure of 3a in complex with tubulin was solved by X-ray crystallography, which explained the improved binding affinity of 3a to tubulin and thus its higher anticancer activity (IC50 = 4.5 nM) than the lead compound 12b (IC50 = 32.5 nM). In vivo, 3a (5 mg/kg) displayed significant antitumor efficacy against B16-F10 melanoma with a TGI of 62.96% and enhanced the antitumor efficacy of a small-molecule PD-1/PD-L1 inhibitor NP19 (TGI = 77.85%). Moreover, 3a potentiated the antitumor immunity of NP19 by activating the tumor immune microenvironment, as demonstrated by the increased tumor-infiltrating lymphocytes (TIL). Collectively, this work shows a successful example of crystal structure-guided discovery of a novel tubulin inhibitor 3a as a potential anticancer and immune-potentiating agent.


Subject(s)
Antineoplastic Agents , Melanoma, Experimental , Animals , Humans , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Tubulin Modulators/chemistry , Colchicine/metabolism , Tubulin/metabolism , X-Rays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Line, Tumor , Binding Sites , Indoles/pharmacology , Indoles/therapeutic use , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Tumor Microenvironment
14.
J Med Chem ; 66(8): 5719-5752, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37042119

ABSTRACT

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for the treatment of non-small-cell lung cancer (NSCLC). Here, we report the identification, structure optimization, and structure-activity relationship studies of quinazoline derivatives as novel selective EGFR L858R/T790M inhibitors. The most promising compound, 28f, exhibited strong inhibitory activity against EGFR L858R/T790M (IC50 = 3.5 nM) and greater than 368-fold selectivity over EGFR WT (IC50 = 1290 nM), a 6.7-fold improvement over osimertinib. Furthermore, 28f effectively inhibited downstream signaling pathways and induced apoptosis in mutant cells. In the H1975 xenograft in vivo model, 28f exhibited a good tumor suppressive effect. Furthermore, the combination of 28f with the ACK1 inhibitor dasatinib produced synergistic antiproliferative efficacy with 28f in 28f-resistant cells and in vivo. In conclusion,28f could become a candidate drug for the treatment of NSCLC, and the combination of 28f and dasatinib is expected to overcome EGFR resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Cell Proliferation , Dasatinib/pharmacology , Cell Line, Tumor , Mutation , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology
15.
Mol Oncol ; 17(7): 1419-1436, 2023 07.
Article in English | MEDLINE | ID: mdl-36965032

ABSTRACT

Currently, the knowledge of long noncoding RNA (lncRNA)-encoded peptides is quite lacking in esophageal squamous cell carcinoma (ESCC). In this study, we simultaneously identified six lncRNA open reading frames (ORFs) with peptide-coding abilities including lysine-specific demethylase 4A antisense RNA 1 (KDM4A-AS1) ORF by combining weighted gene co-expression network analysis (WGCNA) for ESCC clinical samples, ribosome footprints, ORF prediction, mass spectrometry (MS) identification, and western blotting. KDM4A-AS1 ORF-encoded peptide reduced ESCC cell viability and migratory ability. Co-immunoprecipitation and MS analysis revealed that KDM4A-AS1-encoded peptide specifically bound with 103 proteins in ESCC cells, and enrichment analysis suggested that peptide-bound proteins were related to fatty acid metabolism and redox process. Cell and molecular experiments demonstrated that KDM4A-AS1-encoded peptide inhibited stearoyl-CoA desaturase and fatty acid synthase expression, increased reactive oxygen species level, and reduced mitochondrial membrane potential in ESCC cells. In summary, multiple lncRNAs with translation potential were simultaneously identified by combining multiple approaches in ESCC, providing novel identification strategies for lncRNA-encoded peptides. Moreover, lncRNA KDM4A-AS1-encoded peptide weakened ESCC cell viability and migratory capacity and functioned in fatty acid metabolism and redox process.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Fatty Acids , Gene Expression Regulation, Neoplastic , Peptides/genetics , RNA, Long Noncoding/genetics
16.
Eur J Med Chem ; 251: 115229, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36898330

ABSTRACT

Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Ribosomal Protein S6 Kinases, 90-kDa/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Phosphorylation , Mitogen-Activated Protein Kinases/metabolism , Protein Isoforms/metabolism , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
18.
J Med Chem ; 66(5): 3588-3620, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802449

ABSTRACT

Herein, a series of quinazoline and heterocyclic fused pyrimidine analogues were designed and synthesized based on the X-ray co-crystal structure of lead compound 3a, showing efficacious antitumor activities. Two analogues, 15 and 27a, exhibited favorable antiproliferative activities, which were more potent than lead compound 3a by 10-fold in MCF-7 cells. In addition, 15 and 27a exhibited potent antitumor efficacy and tubulin polymerization inhibition in vitro. 15 reduced the average tumor volume by 80.30% (2 mg/kg) in the MCF-7 xenograft model and 75.36% (4 mg/kg) in the A2780/T xenograft model, respectively. Most importantly, supported by structural optimization and Mulliken charge calculation, X-ray co-crystal structures of compounds 15, 27a, and 27b in complex with tubulin were resolved. In summary, our research provided the rational design strategy of colchicine binding site inhibitors (CBSIs) based on X-ray crystallography with antiproliferation, antiangiogenesis, and anti-multidrug resistance properties.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Colchicine/metabolism , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Cell Line, Tumor , X-Rays , Drug Design , Binding Sites , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship
19.
Eur J Med Chem ; 248: 115085, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36621138

ABSTRACT

Novel 4,6-pyrimidine analogues were designed and synthesized as colchicine binding site inhibitors (CBSIs) with potent antiproliferative activities. Among them, compound 17j has the most potent activities against 6 human cancer cell lines with IC50 values from 1.1 nM to 4.4 nM, which was 76 times higher than the lead compound 3 in A549 cells. The co-crystal structure of 17j in complex with tubulin confirms the key binding mode at the colchicine binding site. Moreover, 17j inhibited the tubulin polymerization in biochemical assays, depolymerized cellular microtubules, induced the G2/M arrest, inhibited the cell migration, and promoted the initiation of apoptosis. In vivo, 17j effectively inhibits primary tumor growth with tumor growth inhibition rates of 42.51% (5 mg/kg) and 65.42% (10 mg/kg) in A549 xenograft model. Taken together, 17j represents a promising new generation of CBSIs.


Subject(s)
Antineoplastic Agents , Heterocyclic Compounds , Humans , Colchicine/pharmacology , Colchicine/metabolism , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Binding Sites , Heterocyclic Compounds/pharmacology , Pyrimidines/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship
20.
Nat Commun ; 13(1): 6891, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371441

ABSTRACT

The retrieval of hit/lead compounds with novel scaffolds during early drug development is an important but challenging task. Various generative models have been proposed to create drug-like molecules. However, the capacity of these generative models to design wet-lab-validated and target-specific molecules with novel scaffolds has hardly been verified. We herein propose a generative deep learning (GDL) model, a distribution-learning conditional recurrent neural network (cRNN), to generate tailor-made virtual compound libraries for given biological targets. The GDL model is then applied to RIPK1. Virtual screening against the generated tailor-made compound library and subsequent bioactivity evaluation lead to the discovery of a potent and selective RIPK1 inhibitor with a previously unreported scaffold, RI-962. This compound displays potent in vitro activity in protecting cells from necroptosis, and good in vivo efficacy in two inflammatory models. Collectively, the findings prove the capacity of our GDL model in generating hit/lead compounds with unreported scaffolds, highlighting a great potential of deep learning in drug discovery.


Subject(s)
Deep Learning , Neural Networks, Computer , Drug Discovery , Necroptosis , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...