Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.341
Filter
1.
Chem Res Toxicol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953537

ABSTRACT

Animal studies indicate that bisphenol A (BPA) has obesogenic effects. Recent experiments reported similar endocrine-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), which are substitutes of BPA. The aim of this study was to investigate the exposure levels of these bisphenols in pregnant women and their effects on the physical development of infants aged 0-12 months. This study recruited pregnant women who gave birth at a hospital between February 2019 and September 2020. Urine samples from these pregnant women in the third trimester of pregnancy were detected by using ultrahigh-performance liquid chromatography-triple quadruple mass spectrometry. Follow-ups at 6 and 12 months of age were conducted by telephone by pediatricians using a structured questionnaire. Multiple linear regressions were used to determine the associations between bisphenol concentrations and infant weight. A total of 113 mother-child pairs had complete questionnaires and urine samples as well as data on newborns aged 6 months and 12 months. The detection rates of urinary BPA, BPF, and BPS in pregnant women were 100, 62.83, and 46.02%, respectively. Their median levels are 5.84, 0.54, and 0.07 µg/L, respectively. Increased urinary BPA and BPF concentrations during pregnancy were significantly associated with lower birth weight (standardized regression coefficients [ß] = -0.081 kg, 95% confidence interval [CI]: -0.134 to -0.027; ß = -0.049 kg, 95% CI: -0.097 to -0.001). In addition, urinary BPA and BPF concentrations during pregnancy were positively associated with weight growth rate from 0 to 6 months (ß = 0.035 kg/mouth, 95% CI: 0.00-0.064; ß = 0.028 kg/mouth, 95% CI: 0.006-0.050), especially in female infants (ß = 0.054 kg/mouth, 95% CI: 0.015-0.093; ß = 0.035 kg/mouth, 95% CI: 0.005-0.065). Therefore, maternal BPA and BPF levels during pregnancy were negatively correlated with birth weight and positively correlated with the growth rate of infant weight at 0-6 months of age, especially in female infants.

2.
Eur J Clin Nutr ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961262

ABSTRACT

Low-protein diet (LPD) is the core of dietary and nutritional therapy for non-dialysis chronic kidney disease (CKD) patients. In addition, physical exercise could prevent and treat various illnesses and chronic diseases. The objective of the study was to search for and appraise evidence on the effect of additional physical exercise on patients' nutritional status and indicators of disease progression when compared with the LPD alone. PubMed Central, Embase, Cochrane, and Web of Knowledge for randomized controlled trials (published between January 1, 1956 and May 17, 2023) were searched. A total of 8698 identified studies, 9 were eligible and were included in our analysis (N = 250 participants). Compared with the LPD alone, additional physical exercise reduced serum creatinine by a mean of -0.21 mg/dL (95% CI -0.39 to -0.03) in CKD patients. Similarly, blood pressure decreased after physical exercise, with systolic blood pressure decreasing by -7.05 mm Hg (95% CI -13.13 to -0.96) and diastolic blood pressure decreasing by -5.31 mm Hg (95% CI -7.99 to -2.62). Subgroup analyses revealed that resistance exercise (RE) was effective in decreasing estimated glomerular filtration rate (eGFR) of -1.71 mL/min per 1.73 m² (95% CI -3.29 to -0.14). In addition, the VO2peak increasing by 2.41 mL/kg/min (95% CI 0.13 to 4.70) when physical exercise was continued for 24 weeks. The above results suggest that the LPD with additional physical exercise care is more beneficial for patients with CKD.

3.
Chem Sci ; 15(26): 10172-10181, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966372

ABSTRACT

Metal-support interaction engineering is considered an efficient strategy for optimizing the catalytic activity. Nevertheless, the fine regulation of metal-support interactions as well as understanding the corresponding catalytic mechanisms (particularly those of non-carbon support-based counterparts) remains challenging. Herein, a controllable adsorption-impregnation strategy was proposed for the preparation of a porous nonlayered 2D NiO nanoflake support anchored with different forms of Pt nanoarchitectures, i.e. single atoms, clusters and nanoparticles. Benefiting from the unique porous architecture of NiO nanosheets, abundant active defect sites facilitated the immobilization of Pt single atoms onto the NiO crystal, resulting in NiO lattice distortion and thus changing the valence state of Pt, chemical bonding, and the coordination environment of the metal center. The synergy of the porous NiO support and the unexpected Pt single atom-NiO interactions effectively accelerated mass transfer and reduced the reaction kinetic barriers, contributing to a significantly enhanced mass activity of 5.59 A mgPt -1 at an overpotential of 0.274 V toward the electrocatalytic oxygen evolution reaction (OER) while 0.42 A mgPt -1 at a potential of 0.7 V vs. RHE for the methanol oxidation reaction (MOR) in an alkaline system, respectively. This work may offer fundamental guidance for developing metal-loaded/dispersed support nanomaterials toward electrocatalysis through the fine regulation of metal-support interactions.

4.
Front Immunol ; 15: 1381802, 2024.
Article in English | MEDLINE | ID: mdl-38966637

ABSTRACT

Background: Yishen-Tongbi Decoction (YSTB), a traditional Chinese prescription, has been used to improve syndromes of rheumatoid arthritis (RA) for many years. Previous research has shown that YSTB has anti-inflammatory and analgesic properties. However, the underlying molecular mechanism of the anti-RA effects of YSTB remains unclear. Purpose and study design: The purpose of this research was to investigate how YSTB affected mice with collagen-induced arthritis (CIA) and RAW264.7 cells induced with lipopolysaccharide (LPS). Results: The findings show that YSTB could significantly improve the clinical arthritic symptoms of CIA mice (mitigate paw swelling, arthritis score, thymus and spleen indices, augment body weight), downregulated expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-17, while upregulated the level of anti-inflammatory like IL-10 and transforming growth factor-ß (TGF-ß). Meanwhile, YSTB inhibits bone erosion and reduces inflammatory cell infiltration, synovial proliferation, and joint destruction in CIA mice. In addition, we found that YSTB was able to suppress the LPS-induced inflammation of RAW264.7 cells, which was ascribed to the suppression of nitric oxide (NO) production and reactive oxygen species formation (ROS). YSTB also inhibited the production of inducible nitric oxide synthase and reduced the releases of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. Furthermore, the phosphorylation expression of JAK2, JAK3, STAT3, p38, ERK and p65 protein could be suppressed by YSTB, while the expression of SOCS3 could be activated. Conclusion: Taken together, YSTB possesses anti-inflammatory and prevention bone destruction effects in RA disease by regulating the JAK/STAT3/SOCS3 signaling pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Janus Kinases , STAT3 Transcription Factor , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , RAW 264.7 Cells , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Signal Transduction/drug effects , Janus Kinases/metabolism , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Mice, Inbred DBA , Disease Models, Animal
5.
Transl Oncol ; 47: 101950, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964032

ABSTRACT

BACKGROUND: Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS: Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS: Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION: The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.

6.
BMC Musculoskelet Disord ; 25(1): 522, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970051

ABSTRACT

BACKGROUND: For the treatment of coronoid process fractures, medial, lateral, anterior, anteromedial, and posterior approaches have been increasingly reported; however, there is no general consensus on the method of fixation of coronal fractures. Here, we present a highly-extensile minimally invasive approach to treat coronoid process fractures using a mini-plate that can achieve anatomic reduction, stable fixation, and anterior capsular repair. Further, the study aimed to determine the complication rate of the anterior minimally invasive approach and to evaluate functional and clinical patient-reported outcomes during follow-up. METHODS: Thirty-one patients diagnosed with coronoid fractures accompanied with a "terrible triad" or posteromedial rotational instability between April 2012 and October 2018 were included in the analysis. Anatomical reduction and mini-plate fixation of coronoid fractures were performed using an anterior minimally invasive approach. Patient-reported outcomes were evaluated using the Mayo Elbow Performance Index (MEPI) score, range of motion (ROM), and the visual analog score (VAS). The time of fracture healing and complications were recorded. RESULTS: The mean follow-up time was 26.7 months (range, 14-60 months). The average time to radiological union was 3.6 ± 1.3 months. During the follow-up period, the average elbow extension was 6.8 ± 2.9° while the average flexion was 129.6 ± 4.6°. According to Morrey's criteria, 26 (81%) elbows achieved a normal desired ROM. At the last follow-up, the mean MEPI score was 98 ± 3.3 points. There were no instances of elbow instability, elbow joint stiffness, subluxation or dislocation, infection, blood vessel complications, or nerve palsy. Overall, 10 elbows (31%) experienced heterotopic ossification. CONCLUSION: An anterior minimally invasive approach allows satisfactory fixation of coronoid fractures while reducing incision complications due to over-dissection of soft tissue injuries. In addition, this incision does not compromise the soft tissue stability of the elbow joint and allows the patient a more rapid return to rehabilitation exercises.


Subject(s)
Bone Plates , Elbow Joint , Fracture Fixation, Internal , Fractures, Comminuted , Range of Motion, Articular , Ulna Fractures , Humans , Male , Female , Ulna Fractures/surgery , Ulna Fractures/diagnostic imaging , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Middle Aged , Adult , Fractures, Comminuted/surgery , Fractures, Comminuted/diagnostic imaging , Elbow Joint/surgery , Elbow Joint/diagnostic imaging , Elbow Joint/physiopathology , Treatment Outcome , Retrospective Studies , Follow-Up Studies , Minimally Invasive Surgical Procedures/methods , Minimally Invasive Surgical Procedures/instrumentation , Fracture Healing , Aged , Patient Reported Outcome Measures , Young Adult
7.
Aging (Albany NY) ; 162024 Jul 05.
Article in English | MEDLINE | ID: mdl-38975935

ABSTRACT

OBJECTIVE: To investigate the effect of sevoflurane on neuropathic pain induced by chronic constriction injury (CCI) of sciatic nerve in mice, and to elucidate its mechanism by animal experiments. METHODS AND RESULTS: Thirty-two C57BL/6 mice were randomly divided into four groups: Sham group, Model group, Control group and Sevoflurane group. First, a mouse model of neuropathic pain was established. Then, the mice in each group were killed on Day 14 after operation to harvest the enlarged lumbosacral spinal cord. In contrast with the Model group, the Sevoflurane group displayed a significantly increased paw withdrawal mechanical threshold (PWMT) and significantly prolonged paw withdrawal thermal latency (PWTL) from Day 5 after operation. The morphological changes of lumbosacral spinal cord were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy. Pathological results showed that sevoflurane reduced nuclear pyknosis in lumbosacral spinal cord tissue, with a large number of mitochondrial crista disappearance and mitochondrial swelling. The results of Western blotting showed that sevoflurane significantly decreased the protein expressions of phosphorylated phospholipase Cγ (p-PLCγ), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) and phosphorylated inositol 1,4,5-triphosphate receptor (p-IP3R), and reduced the protein expressions of endoplasmic reticulum (ER) stress proteins glucose-regulated protein 78 (GRP78) and GRP94, oxidative stress-related proteins P22 and P47 and inflammatory factors nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), interleukin-1 ß (IL-1ß), and tumor necrosis factor-α (TNF-α). CONCLUSIONS: Sevoflurane inhibits neuropathic pain by maintaining ER stress and oxidative stress homeostasis through inhibiting the activation of the PLCγ/CaMKII/IP3R signaling pathway.

8.
Cardiovasc Diabetol ; 23(1): 225, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943172

ABSTRACT

BACKGROUND: The Triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, has been implicated in the risk of ischemic stroke. However, the interplay between TyG levels, lifestyle factors, and their collective impact on stroke risk in non-diabetic populations remains inadequately explored. This study aims to evaluate the association of ischemic stroke with the joint development of the TyG index and lifestyle in the non-diabetic population. METHODS: In this prospective cohort study, data was collected across three consecutive biennial surveys of the Kailuan Study from 2006 to 2011. The dual-trajectory model was used to determine the temporal development of TyG levels and lifestyle scores. Statistical analysis involved Cox regression models to evaluate the association between TyG-lifestyle trajectories and ischemic stroke risk, adjusting for potential confounders. RESULTS: A total of 44,403 participants were included, with five distinct TyG levels and lifestyle scores trajectory subtypes identified. In the multivariable-adjusted analyses, significant differences in ischemic stroke risk among the trajectory subtypes. Group 5, characterized by the highest TyG levels and moderate lifestyle scores, exhibited the greatest ischemic stroke risk (HR = 1.81, 95% CI: 1.51-2.18), while group 4, with moderate TyG levels and higher lifestyle scores, demonstrated the lowest risk (HR = 1.19, 95% CI: 1.04-1.37), compared with group 3. Participants with elevated TyG levels were at an increased risk of ischemic stroke in cases of pronounced insulin resistance, even with a healthy lifestyle. CONCLUSIONS: This study reveals the significant associations between the identified TyG and lifestyle trajectories and the stratification of ischemic stroke risk among non-diabetics. The TyG index is a valuable indicator for assessing insulin resistance. However, the potential benefits of lifestyle changes for those with significantly high TyG levels need to be clarified by more research to develop more effective stroke prevention strategies.


Subject(s)
Biomarkers , Blood Glucose , Insulin Resistance , Ischemic Stroke , Life Style , Risk Reduction Behavior , Triglycerides , Humans , Male , Middle Aged , Female , Prospective Studies , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnosis , Risk Factors , Risk Assessment , Biomarkers/blood , Blood Glucose/metabolism , China/epidemiology , Aged , Triglycerides/blood , Time Factors , Adult , Prognosis , Healthy Lifestyle
9.
Fitoterapia ; 177: 106088, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897245

ABSTRACT

Ligularia fischeriTurcz. is a medicinal plant for the treatment of inflammation in China and Korea. Its chemical components in anti-sepsis activity and the related molecular mechanisms remain unknown yet. In this study, two undescribed eremophilane sesquiterpenoids fischerins A (1) and B (2), together with 8 known sesquiterpenoid derivatives (3-10), were isolated from the whole plant of L. fischeri. Their structures were identified by detailed spectroscopic and ECD analyses. 3-Oxo-8-hydroxyeremophila-1,7(11)-dien-12,8-olide (6) showed the most inhibitory effect on NO production in LPS-stimulated RAW 264.7 cells with the IC50 value of 6.528 µM. Meanwhile, compound 6 also decreased the mRNA expression of pro-inflammatory factors IFN-γ, IL-1ß, IL-6 and TNF-α via downregulating NF-κB signaling pathway in vitro. Furthermore, compound 6 reduced the mortality, murine sepsis score, the serum TNF-α level and organic damage in a mouse model of sepsis. These findings indicated that compound 6 possessed the potent anti-inflammatory activity and had the potential as a promising drug candidate for sepsis therapy.

10.
BMC Cancer ; 24(1): 770, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926893

ABSTRACT

BACKGROUND: Despite the existence of numerous studies investigating the diagnostic potential of blood microRNAs for colorectal cancer, the microRNAs under consideration vary widely, and comparative analysis of their diagnostic value is lacking. Consequently, this systematic review aims to identify the most effective microRNA blood tumor markers to enhance clinical decision-making in colorectal cancer screening. METHOD: A comprehensive search of databases, including PubMed, Embase, Web of Science, Scopus, and Cochrane, was conducted to identify case‒control or cohort studies that examined the diagnostic value of peripheral blood microRNAs in colorectal cancer. Studies were included if they provided sensitivity and specificity data, were published in English and were available between January 1, 2000, and February 10, 2023. The Critical Appraisal Skills Programme (CASP) checklist was employed for quality assessment. A Bayesian network meta-analysis was performed to estimate combined risk ratios (RRs) and 95% confidence intervals (CIs), with results presented via rankograms. This study is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 202,380,092. RESULTS: From an initial pool of 2254 records, 79 met the inclusion criteria, encompassing a total of 90 microRNAs. The seven most frequently studied microRNAs (43 records) were selected for inclusion, all of which demonstrated moderate to high quality. miR-23, miR-92, and miR-21 exhibited the highest sensitivity and accuracy, outperforming traditional tumor markers CA19-9 and CEA in terms of RR values and 95% CI for both sensitivity and accuracy. With the exception of miR-17, no significant difference was observed between each microRNA and CA19-9 and CEA in terms of specificity. CONCLUSIONS: Among the most extensively researched blood microRNAs, miR-23, miR-92, and miR-21 demonstrated superior diagnostic value for colorectal cancer due to their exceptional sensitivity and accuracy. This systematic review and network meta-analysis may serve as a valuable reference for the clinical selection of microRNAs as tumor biomarkers.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , MicroRNAs , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , MicroRNAs/blood , Network Meta-Analysis , Sensitivity and Specificity , Early Detection of Cancer/methods , Bayes Theorem
11.
Org Lett ; 26(26): 5528-5533, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38901007

ABSTRACT

This paper outlines an innovative three-component coupling strategy for the 1,4-difunctionalization of 1,3-butadiene, utilizing sodium decatungstate (NaDT) as a hydrogen atom transfer (HAT) photocatalyst. The photoinduced process efficiently generates homoallylic amino acid esters with 100% atom economy, employing readily available components under mild reaction conditions. This light-induced protocol eliminates the need for an additional transition metal catalysts, additives, or equivalent reducing agents. The study explored various C(sp3)-H bearing partners, butadienes, and α-iminoesters, demonstrating the versatility and synthetic utility of this method.

12.
Redox Biol ; 74: 103194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852200

ABSTRACT

Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Methyltransferases , Sepsis , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Sepsis/metabolism , Sepsis/complications , Mice , Humans , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Lung Injury/metabolism , Lung Injury/etiology , Lung Injury/pathology , Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Male , Disease Models, Animal , Lactic Acid/metabolism
13.
J Neurosci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844343

ABSTRACT

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the inter-wired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and post-mortem fetal brains, the in-utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in-utero dMRI data from human fetuses of both sexes between 26 to 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intra-hemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for the Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.Significance Statement We studied the normal development of intra-hemispheric cortico-cortical structural connectivity networks (SCNs) of the fetal brain from 26 to 38 gestational weeks using in-utero diffusion MRI data. Graph-theory-based analysis revealed significant enhancement in network efficiency and clustering, as well as persisted small-worldness with age, revealing balanced integration and segregation in the fetal brain SCN during the studied period, supported by regional developmental patterns. Leftward lateralization in network efficiency, clustering coefficient and small-worldness was observed. Regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge. We also summarized the challenges of investigating the fetal brain SCN development, and provided suggestions for future studies.

14.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884407

ABSTRACT

Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.

15.
JCI Insight ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888975

ABSTRACT

The excessive formation and release of neutrophil extracellular traps (NETs) in sepsis may represent a substantial mechanism contributing to multi-organ damage, which is associated with a poorer prognosis. However, the precise role of NETs in mediating the transition from innate immunity to adaptive immunity during the progression of inflammation and sepsis remains incompletely elucidated. In this study, we provide evidence that, despite a reduction in the number of CD4+ T-cells in the late stage of sepsis, there is a notable upregulation in the proportion of regulatory T-cells (Tregs). Mechanistically, we have identified that NETs can induce metabolic reprogramming of naïve CD4+ T-cells through the Akt-mTOR-SREBP2 pathway, resulting in enhanced cholesterol metabolism, thereby promoting their conversion into Tregs and augmenting their functional capacity. Collectively, our findings highlight the potential therapeutic strategy of targeting intracellular cholesterol normalization for the management of immunosuppressed patients with sepsis.

16.
Heliyon ; 10(11): e32114, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882369

ABSTRACT

Background: Cervical intraepithelial neoplasia (CIN) encompasses a range of cervical lesions that are closely linked to cervical invasive carcinoma. Early detection and timely treatment of CIN are crucial for preventing the progression of the disease. However, no bibliometric analysis has been conducted in this area. This research aimed to employ bibliometric analysis to summarize the current research hotspots and estimate future research trends in the CIN field. Methods: Publications related to CIN (2013-2023) were retrieved from the Science-Citation-Index-Expanded-of-Web-of-Science-Core-Collection. CiteSpace, VOSviewer, and the bibliometric-Online-Analysis-Platform-of-Literature-Metrology were employed to analyze the yearly research output, collaborating institutions or countries, leading researchers, principal journals, co-referenced sources, and emerging keywords. Results: In total, 4677 articles on CIN that were published from 2013 to 2023 and met our criteria were extracted. Major publishing platforms were predominantly USA until 2017 when China emerged as the leading source of publications about CIN. The USA was the leading nation in international collaborations. The National-Cancer-Institute (NCI) was the institution with the most publications. Schiffman Mark produced the highest number of articles, with a total of 92. Ten major clusters were identified through co-cited keyword clustering, including prevalence, human papillomavirus, DNA methylation, p16, methylation, conization, HPV genotyping tests (VALGENT), deep learning, vaginal microbiome, and immunohistochemistry. Keyword burst analysis showed that photodynamic therapy and deep learning emerged as prominent research focal points with significant impact in resent three years. Conclusion: Global publications on CIN research showed a relatively stable trend over the past eleven years. Current research hotspots are deep learning and photodynamic therapy. This research offered organized data and insightful guidance for future studies, which may help better prevent, screen, and treat CIN.

17.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893352

ABSTRACT

Molecular probes with the ability to differentiate between subcellular variations in acidity levels remain important for the investigation of dynamic cellular processes and functions. In this context, a series of cyclic peptide and PEG bio-conjugated dual near-infrared emissive BF2-azadipyrromethene fluorophores with maxima emissions at 720 nm (at pH > 6) and 790 nm (at pH < 5) have been developed and their aqueous solution photophysical properties determined. Their inter-converting emissions and fluorescence lifetime characteristics were exploited to track their spatial and temporal progression from first contact with the plasma membrane to subcellular locales to their release within extracellular vesicles. A pH-dependent reversible phenolate/phenol interconversion on the fluorophore controlled the dynamic changes in dual emission responses and corresponding lifetime changes. Live-cell confocal microscopy experiments in the metastatic breast cancer cell line MDA-MB-231 confirmed the usability of the dual emissive properties for imaging over prolonged periods. All three derivatives performed as probes capable of real-time continuous imaging of fundamental cellular processes such as plasma membrane interaction, tracking endocytosis, lysosomal/large acidic vesicle accumulation, and efflux within extracellular vesicles without perturbing cellular function. Furthermore, fluorescence lifetime imaging microscopy provided valuable insights regarding fluorophore progression through intracellular microenvironments over time. Overall, the unique photophysical properties of these fluorophores show excellent potential for their use as information-rich probes.


Subject(s)
Cell Membrane , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Cell Membrane/metabolism , Cell Membrane/chemistry , Cell Line, Tumor , Microscopy, Confocal , Hydrogen-Ion Concentration , Microscopy, Fluorescence/methods , Endocytosis , Peptides, Cyclic/chemistry
18.
Talanta ; 277: 126346, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38897010

ABSTRACT

A novel dual-mode biosensor was constructed for the ultrasensitive detection of neuron-specific enolase (NSE), utilizing Tb-Cu MOF@Au nanozyme as the signal label to effectively quench the photoelectrochemical (PEC) signals of Bi2O3/Bi2S3/AgBiS2 composites and initiate fluorescent (FL) signals. First, Bi2O3/Bi2S3/AgBiS2 heterojunction with excellent photoelectric activity was selected as the substrate material to provide a stable photocurrent. The well-matched energy levels significantly enhanced the separation and transfer of photogenerated carriers. Second, a strategy of consuming ascorbic acid (AA) by Tb-Cu MOF@Au nanozyme was introduced to improve the sensitivity of the PEC/FL biosensor. Tb-Cu MOF@Au not only could catalyze the oxidation of AA, but the steric effect further reduced the contact of AA with the substrate. More importantly, in the presence of H2O2, a significant fluorescence was produced from Tb3+ sensitized by the oxidation products of AA. Based on the above strategies, a highly stable and sensitive dual-mode biosensor was proposed for accurate NSE determination. Third, the developed dual-mode biosensor demonstrated excellent performance in detecting NSE. In this study, the PEC method demonstrated a wide detection range from 0.00005 to 200 ng/mL with a low detection limit of 20 fg/mL. The FL method exhibited a linear range from 0.001 to 200 ng/mL with a detection limit of 0.65 pg/mL. The designed biosensor showed potential practical implications in the accurate detection of disease markers.

19.
J Pharm Sci ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857643

ABSTRACT

Exploiting a convenient and highly bioavailable ocular drug delivery approach is currently one of the hotspots in the pharmaceutical industry. Eyelid topical application is seen to be a valuable strategy in the treatment of chronic ocular diseases. To further elucidate the feasibility of eyelid topical administration as an alternative route for ocular drug delivery, pharmacokinetic and pharmacodynamic studies of pilocarpine were conducted in rabbits. Besides, a novel physiologically based pharmacokinetic (PBPK) model describing eyelid transdermal absorption and ocular disposition was developed in rabbits. The PBPK model of rabbits was extrapolated to human by integrating the drug-specific permeability parameters and human physiological parameters to predict ocular pharmacokinetic in human. After eyelid topical application of pilocarpine, the concentration of pilocarpine in iris peaked at 2 h with the value of 18,724 ng/g and the concentration in aqueous humor peaked at 1 h with the value of 1,363 ng/mL. Significant miotic effect were observed from 0.5 h to 4.5 h after eyelid topical application of pilocarpine in rabbits, while that were observed from 0.5 h to 3.5 h after eyedrop instillation. The proposed eyelid PBPK model was capable of reasonably predicting ocular exposure of pilocarpine after application on the eyelid skin and based on the PBPK model, the human ocular concentration was predicted to be 10-fold lower than that in rabbits. And it was suggested that drugs applied on the eyelid skin could transfer into the eyeball through corneal pathway and scleral pathway. This work could provide pharmacokinetic and pharmacodynamic data for the development of eyelid drug delivery, as well as the reference for clinical applications.

20.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891896

ABSTRACT

Heat shock proteins (HSPs) are a class of highly conserved proteins that play an important role in biological responses to various environmental stresses. The mariculture of Thamnaconus septentrionalis, a burgeoning aquaculture species in China, frequently encounters stressors such as extreme temperatures, salinity variations, and elevated ammonia levels. However, systematic identification and analysis of the HSP70 and HSP90 gene families in T. septentrionalis remain unexplored. This study conducted the first genome-wide identification of 12 HSP70 and 4 HSP90 genes in T. septentrionalis, followed by a comprehensive analysis including phylogenetics, gene structure, conserved domains, chromosomal localization, and expression profiling. Expression analysis from RNA-seq data across various tissues and developmental stages revealed predominant expression in muscle, spleen, and liver, with the highest expression found during the tailbud stage, followed by the gastrula, neurula, and juvenile stages. Under abiotic stress, most HSP70 and HSP90 genes were upregulated in response to high temperature, high salinity, and low salinity, notably hspa5 during thermal stress, hspa14 in high salinity, and hsp90ab1 under low salinity conditions. Ammonia stress led to a predominance of downregulated HSP genes in the liver, particularly hspa2, while upregulation was observed in the gills, especially for hsp90b1. Quantitative real-time PCR analysis corroborated the expression levels under environmental stresses, validating their involvement in stress responses. This investigation provides insights into the molecular mechanisms of HSP70 and HSP90 in T. septentrionalis under stress, offering valuable information for future functional studies of HSPs in teleost evolution, optimizing aquaculture techniques, and developing stress-resistant strains.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Phylogeny , Stress, Physiological , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Stress, Physiological/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Multigene Family , Gene Expression Profiling , Fishes/genetics , Fishes/metabolism , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...