Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Iran J Basic Med Sci ; 27(7): 888-894, 2024.
Article En | MEDLINE | ID: mdl-38800035

Objectives: Sox11, one of the SoxC family members, is an important transcription factor during neural development and neurogenesis. However, there is no report about its function in neural apoptosis. This research aims to examine the function of Sox11 in surgical brain injury (SBI). Materials and Methods: We used 90 Sprague-Dawley rats to develop the SBI models and the siRNA of Sox11 to study the roles of Sox11. Western blot, real-time PCR, immunofluorescence, neuron apoptosis and necrosis, brain edema, and neurological score were determined. Results: The gene and protein amount of Sox11, compared with the Sham group, were increased after SBI, which reached a peak at 12 hr. In addition, following the application of siRNAs, the amount of Sox11 protein was significantly less than that in the SBI group. On the other hand, neuronal apoptosis, necrosis, and brain edema were significantly increased, while neurological scores were decreased. Conclusion: These findings demonstrate the role of Sox11 following nerve injury induced by SBI. Inhibition of Sox11 with siRNA may lead to neuronal injury and cell death, aggravating secondary brain injury after SBI.

2.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Article En | MEDLINE | ID: mdl-38617541

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Lovastatin/pharmacology , Lovastatin/therapeutic use , Ribosomal Proteins/genetics , Nuclear Proteins , Ribosomes/genetics , Mitochondrial Proteins
3.
Iran J Basic Med Sci ; 27(3): 352-359, 2024.
Article En | MEDLINE | ID: mdl-38333750

Objectives: Mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage and mutation is widely accepted as one of the pathological processes of neurodegenerative diseases. As an mtDNA binding protein, mitochondrial transcription factor A (TFAM) maintains the integrity of mtDNA through transcription, replication, nucleoid formation, damage perception, and DNA repair. In recent works, the overexpression of TFAM increased the mtDNA copy count, promoted mitochondrial function, and improved the neurological dysfunction of neurodegenerative diseases. The role of TFAM in neurodegenerative diseases has been well explained. However, the role of TFAM after surgical brain injury (SBI) has not been studied. In this work, we aimed to study the role of TFAM in the brain after SBI and its mechanism of action. Materials and Methods: One hour after the occurrence of SBI, tetramethylpyrazine (TMP) was injected into the abdominal cavity of rats, and the brain was collected 48 hr later for testing. The evaluation included neurobehavioral function test, brain water content measurement, immunofluorescence, western blot, TUNEL staining, FJC staining, ROS test, and ATP test. Results: After SBI, the content of TFAM on the ipsilateral side increased and reached a peak at about 48 hr. After intraperitoneal injection of TMP in rats, 48 hr after SBI, the concentration of TFAM, Bcl-2, and adenosine triphosphate (ATP) increased; the content of caspase-3, reactive oxygen species (ROS), and cerebral edema decreased; and the nerve function significantly improved. Conclusion: TMP inhibited cell apoptosis after SBI in rats by up-regulating TFAM and protecting brain tissues.

4.
J Gene Med ; 26(1): e3647, 2024 Jan.
Article En | MEDLINE | ID: mdl-38084655

Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.


Amino Acids , Triple Negative Breast Neoplasms , Humans , Female , Immunotherapy , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment
5.
Int J Mol Med ; 52(6)2023 Dec.
Article En | MEDLINE | ID: mdl-37888730

Traumatic brain injury (TBI) can lead to the disruption of endoplasmic reticulum (ER) homeostasis in neurons and induce ER stress. Transmembrane protein 2 (TMEM2) may regulate ER stress through the p38/ERK signaling pathway, independent of the classic unfolded protein response (UPR) pathway. The present study examined the expression of TMEM2 following TBI in a rat model, in an aim to determine whether the mitogen­activated protein kinase (MAPK) signaling pathway is controlled by TMEM2/CD44 to mitigate secondary brain injury. For this purpose, 89 Sprague­Dawley rats were used to establish the model of TBI, and TMEM2 siRNA was used to silence TMEM2. Western blot analysis, immunofluorescence, TUNEL assay and Fluoro­Jade C staining, the wet­dry method and behavioral scoring were used for analyses. The results revealed that TMEM2 was activated following TBI in rats. The silencing of TMEM2 resulted in a significant increase in the levels of p38 and ERK (components of MAPK signaling), while brain edema, neuronal apoptosis and degeneration were significantly aggravated. TBI increased TMEM2/CD44­aggravated brain edema and neurological impairment, possibly by regulating ERK and p38 signaling. TMEM2/CD44 may thus be a target for the prevention and control of TBI.


Brain Edema , Brain Injuries, Traumatic , Endoplasmic Reticulum Stress , Hyaluronan Receptors , Membrane Proteins , Animals , Rats , Apoptosis/genetics , Brain Edema/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Endoplasmic Reticulum Stress/genetics , Mitogen-Activated Protein Kinases/metabolism , Neurons/metabolism , Rats, Sprague-Dawley , Hyaluronan Receptors/metabolism , Membrane Proteins/metabolism
6.
Clin Exp Pharmacol Physiol ; 50(12): 927-935, 2023 12.
Article En | MEDLINE | ID: mdl-37675456

Ferroptosis is a recently discovered non-apoptotic form of cellular death. Acyl-CoA synthetase long-chain family number 4 (ACSL4) is necessary for iron-dependent cellular death, and reactive oxygen species (ROS) produced by ACSL4 are the executioners of ferroptosis. Rosiglitazone improves ferroptosis by inhibiting ACSL4. There is no research indicating whether ACSL4 plays a role in cell death after surgical brain injury (SBI). This study aimed to investigate the role of ACSL4 in SBI via the ferroptosis pathway. Ninety male Sprague-Dawley rats were examined using a model of SBI. Subsequently, the inhibitory effect of rosiglitazone on ACSL4 was assessed via western blot, real-time polymerase chain reaction (PCR), immunofluorescence, fluoro-jade C staining, Perl's staining, ROS assay, and neurological scoring. The results showed that compared with the Sham group, the protein levels of ACSL4 and transferrin were significantly increased after SBI. Administration of rosiglitazone significantly reduced neuronal necrosis, iron deposition, brain water content and ROS in brain tissue and ameliorated neurological deficits at 48 h after SBI, which was concomitant with decreased transferrin expression. These findings demonstrate that SBI-induced upregulation of ACSL4 may be partly mediated by the ferroptosis pathway, which can be reversed by rosiglitazone administration.


Brain Injuries , Brain Neoplasms , Rats , Male , Animals , Rosiglitazone/pharmacology , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Brain/metabolism , Brain Injuries/drug therapy , Iron , Transferrins/metabolism , Ligases/metabolism
7.
Breast Cancer Res ; 25(1): 88, 2023 07 26.
Article En | MEDLINE | ID: mdl-37496019

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with limited therapeutic options readily available. Immunotherapy such as immune checkpoint inhibition has been investigated in TNBC but still encounters low overall response. Neutrophils, the most abundant leukocytes in the body, are increasingly recognized as an active cancer-modulating entity. In the bloodstream, neutrophils escort circulating tumor cells to promote their survival and stimulate their proliferation and metastasis. In the tumor microenvironment, neutrophils modulate the immune milieu through polarization between the anti-tumor and the pro-tumor phenotypes. Through a comprehensive review of recently published literature, it is evident that neutrophils are an important player in TNBC immunobiology and can be used as an important prognostic marker of TNBC. Particularly, in their pro-tumor form, neutrophils facilitate TNBC metastasis through formation of neutrophil extracellular traps and the pre-metastatic niche. These findings will help advance the potential utilization of neutrophils as a therapeutic target in TNBC.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Neutrophils/pathology , Tumor Microenvironment
8.
Pharmgenomics Pers Med ; 16: 153-172, 2023.
Article En | MEDLINE | ID: mdl-36908806

Background: The incidence of cutaneous melanoma continues to rise rapidly and has an extremely poor prognosis. Immunotherapy strategies are the most effective approach for patients who have developed metastases, but not all cases have been successful due to the complex and variable mechanisms of melanoma response to immune checkpoint inhibition. Methods: We synthesized collagen-coding gene expression data (second-generation and single-cell sequencing) from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as Metascape database, Gene Set Cancer Analysis (GSCA) database, and Cytoscape software, etc., to investigate the biological mechanisms that may be related with collagens. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of Nidogen-2 (NID2). Results: Melanoma patients can be divided into two collagen clusters. Patients with high collagen levels (C1) had a shorter survival than those with low collagen levels (C2) and were less likely to benefit from immunotherapy. We demonstrated that NID2 is a potential key factor in the collagen phenotype, is involved in fibroblast activation in melanoma, and forms a barrier to limit the proximity of CD8+ T cells to tumor cells. Conclusion: We clarified the adverse effects of collagen on melanoma patients and identified NID2 as a potential therapeutic target.

9.
Exp Ther Med ; 24(6): 728, 2022 Dec.
Article En | MEDLINE | ID: mdl-36382093

Blood-brain barrier (BBB) damage is closely related to morbidity and mortality in patients with traumatic brain injury (TBI). Inhibition of VEGF effectively protects BBB integrity in clinical ischemic stroke. Protecting BBB integrity, reducing brain edema and alleviating post-TBI secondary brain injury are key to a favorable patient prognosis. MMP-9 affects BBB integrity by destroying the tight junction of vascular endothelial cells and inhibiting the transport and enzymatic systems. The present study aimed to examine the possible interplay between VEGF and MMP-9 in TBI. A TBI model was established in 87 male Sprague-Dawley rats. Reverse transcription-quantitative PCR, western blotting, wet-dry brain edema assessment, TUNEL and Fluoro-Jade C staining were performed to analyze the brain tissue samples of the rats. The results showed that compared with in the Sham group rats, the mRNA and protein expression levels of VEGF and MMP-9 were increased at 24 h post-TBI. After bevacizumab treatment, BBB permeability and nerve cell apoptosis were markedly reduced. In conclusion, the present study revealed a potential role for TBI-associated VEGF and MMP-9 upregulation in BBB disruption and nerve damage post-TBI.

10.
J Cancer ; 13(12): 3368-3377, 2022.
Article En | MEDLINE | ID: mdl-36186902

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited therapeutic options available. We have recently demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, suppresses TNBC cell proliferation and stemness properties in vitro and in vivo. However, the mechanisms through which lovastatin inhibits TNBC cells are not fully understood. Here, we used 1H NMR-based metabolomic profiling to investigate lovastatin-induced metabolic changes in TNBC cell line MDA-MB-231. Among the 46 metabolites identified, lactate demonstrated the highest variable importance in projection (VIP) score. Glycolysis stress test revealed that lovastatin significantly decreased the extracellular acidification rate (ECAR) in MDA-MB-231 cells. Furthermore, lovastatin treatment down-regulated the levels of glycolysis-related proteins including GLUT1, PFK1, and PKM2 in MDA-MB-231 but not non-TNBC MDA-MB-453 cells. In addition, lovastatin induced autophagy as evidenced by increased LC3 puncta formation and LC3-II/I ratio, increased AMPK phosphorylation, and decreased Akt phosphorylation. We also revealed the interaction between the glycolytic enzyme hexokinase 2 (HK2) and the mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1), an important regulator of autophagy. Further bioinformatics analysis revealed that VDAC1 was expressed at a higher level in breast cancer than normal tissues and higher level of VDAC1 predicted poorer survival outcomes in breast cancer patients. The present study suggests that lovastatin might exert anti-tumor activity by reprogramming glycolysis toward autophagy in TNBC cells through HK2-VDAC1 interaction.

11.
Brain Res Bull ; 183: 116-126, 2022 06 01.
Article En | MEDLINE | ID: mdl-35247489

Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.


Blood-Brain Barrier , NF-kappa B , Animals , Apoptosis , Blood-Brain Barrier/metabolism , Down-Regulation , NF-kappa B/metabolism , Rats , Signal Transduction
12.
Front Oncol ; 12: 804466, 2022.
Article En | MEDLINE | ID: mdl-35280756

Background: In triple-negative breast cancer (TNBC), PDL1/PD1-directed immunotherapy is effective in less than 20% of patients. In our preliminary study, we have found CSPG4 to be highly expressed together with PDL1 in TNBCs, particularly those harboring TP53 aberrations. However, the clinical implications of co-expressed CSPG4 and PDL1 in TNBCs remain elusive. Methods: A total of 85 advanced TNBC patients treated in the Hunan Cancer Hospital between January 2017 and August 2019 were recruited. The expressions of CSPG4 and PDL1 in TNBC tissues were investigated using immunohistochemistry (IHC). The RNA-seq dataset from the TCGA-BRCA project was further used to analyze the mRNA expression of CSPG4 and PDL1 in TP53-aberrant TNBCs. Cox proportional hazards model and Kaplan-Meier curves with Logrank test was used to analyze the effects of CSPG4 and PDL1 on survival. TNBC cell lines were further used to investigate the molecular mechanism that were involved. Results: TP53 aberrations occurred in more than 50% of metastatic TNBCs and were related to higher tumor mutation burden (TMB). In TCGA-BRCA RNA-seq dataset analysis, both CSPG4 and PDL1 levels were high in TNBCs, especially in TP53-aberrant TNBCs. IHC assay showed nearly 60% of advanced TNBCs to be CSPG4-positive and about 25% to be both CSPG4-positive and PDL1-positive. The levels of CSPG4 and PDL1 were high in TNBC cell lines as revealed by flow cytometry and immunoblotting compared with non-TNBC cells. Univariate Cox regression analysis indicated that CSPG4 positivity was a significant risk factor for progression-free survival in metastatic TNBCs, with a hazard ratio (HR) of 2.26 (P = 0.05). KM curves with Logrank test also identified high level of CSPG4 as a significant risk factor for overall survival in advanced breast cancers in TCGA-BRCA samples (P = 0.02). The immunoblotting assays showed that EMT-related pathways were involved in CSPG4-mediated invasion. Conclusions: CSPG4 expression level is associated with PDL1 positivity in TP53-aberrant TNBC cells. Patients with CSPG4 expression have poor treatment response and poor overall survival. Co-expressed CSPG4 and PDL1 may have an important prognostic value and provide new therapeutic targets in TNBC patients. CSPG4 might mediate tumor invasion and PDL1 overexpression through EMT-related pathway.

13.
Front Oncol ; 12: 731528, 2022.
Article En | MEDLINE | ID: mdl-35174077

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks approved specific targeted therapies. One of the major reasons why TNBC is difficult to treat is the high proportion of cancer stem cells within the tumor tissue. Nucleolus is the location of ribosome biogenesis which is frequently overactivated in cancer cells and overactivation of ribosome biogenesis frequently drives the malignant transformation of cancer. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a nucleolar protein responsible for nucleolus organization and rRNA synthesis and plays an important role in ribosome biogenesis. However, the correlation of NOLC1 expression with patient prognosis and its value as a therapeutic target have not been evaluated in TNBC. In the current study, based on bioinformatics analysis of the online databases, we found that the expression of NOLC1 was higher in breast cancer tissues than normal tissues, and NOLC1 was expressed at a higher level in TNBC than other subtypes of breast cancer. GSEA analysis revealed that stemness-related pathways were significantly enriched in breast cancer with high NOLC1 gene expression. Further analyses using gene expression profiling interactive analysis 2 (GEPIA2), tumor immune estimation resource (TIMER) and search tool for retrieval of interacting genes/proteins (STRING) demonstrated that NOLC1 was significantly associated with stemness in both all breast cancer and basal-like breast cancer/TNBC patients at both gene and protein levels. Knockdown of NOLC1 by siRNA decreased the protein level of the key stemness regulators MYC and ALDH and inhibited the sphere-forming capacity in TNBC cell line MDA-MB-231. Univariate and multivariate Cox regression analyses demonstrated that NOLC1 was an independent risk factor for overall survival in breast cancer. PrognoScan and Kaplan-Meier plotter analyses revealed that high expression of NOLC1 was associated with poor prognosis in both all breast cancer and TNBC patients. Further immunohistochemical analysis of breast cancer patient samples revealed that TNBC cells had a lower level of NOLC1 in the nucleus compared with non-TNBC cells. These findings suggest that NOLC1 is closely associated with the stemness properties of TNBC and represents a potential therapeutic target for TNBC.

14.
Biochem Biophys Res Commun ; 589: 85-91, 2022 01 22.
Article En | MEDLINE | ID: mdl-34896780

Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.


Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Drug Resistance, Neoplasm , Lovastatin/pharmacology , Paclitaxel/pharmacology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Cell Line, Tumor , Cytochrome P-450 CYP2C8/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Male , Models, Biological , Prognosis , Prostatic Neoplasms/genetics
15.
Am J Transl Res ; 13(11): 12626-12637, 2021.
Article En | MEDLINE | ID: mdl-34956478

BACKGROUND: Psoriasis is a systemic inflammatory disease characterized by epidermal hyperplasia and skin inflammatory infiltrates. Inactivation of AMPK has been shown to decrease autophagy, thereby inhibiting elimination of inflammatory factors and harmful substances, and aggravating psoriasis. However, the molecular mechanism through which AMPK affects psoriasis remains to be further explored. In this study, we investigated whether AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thereby affecting a mouse model of psoriasis. METHODS: Imiquimod was used to induce psoriasis-like lesions on the backs of mice. The severity of skin lesions in psoriatic mice was evaluated with the skin inflammation severity score, and epidermal thickness was measured on the basis of H&E staining. RT-PCR, western blotting and immunofluorescence staining were used to detect indicators of autophagy and mitochondrial autophagy. RESULTS: AMPK activity was inhibited in the psoriasis mouse model, the autophagy-associated proteins ULK1/Atg7 were inhibited, and the mitochondrial autophagy proteins PINK1/Parkin were also decreased. Results indicated that autophagy and mitochondrial autophagy were inhibited in the mouse model. When AMPK signaling was upregulated, ULK1/Atg7 and PINK1/Parkin were upregulated, autophagy and mitochondrial autophagy increased, and skin lesions in the mouse model were alleviated. ULK1/Atg7 and PINK1/Parkin were down-regulated when AMPK signaling was downregulated, and psoriasis-like skin lesions were aggravated in mice. These results indicated that AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thus affecting the prognosis of psoriasis in the mouse model. CONCLUSION: AMPK affects the prognosis of psoriasis in a mouse model by regulating autophagy and mitochondrial autophagy.

16.
ACS Synth Biol ; 10(12): 3379-3395, 2021 12 17.
Article En | MEDLINE | ID: mdl-34762392

Microbes are being engineered for an increasingly large and diverse set of applications. However, the designing of microbial genomes remains challenging due to the general complexity of biological systems. Adaptive Laboratory Evolution (ALE) leverages nature's problem-solving processes to generate optimized genotypes currently inaccessible to rational methods. The large amount of public ALE data now represents a new opportunity for data-driven strain design. This study describes how novel strain designs, or genome sequences not yet observed in ALE experiments or published designs, can be extracted from aggregated ALE data and demonstrates this by designing, building, and testing three novel Escherichia coli strains with fitnesses comparable to ALE mutants. These designs were achieved through a meta-analysis of aggregated ALE mutations data (63 Escherichia coli K-12 MG1655 based ALE experiments, described by 93 unique environmental conditions, 357 independent evolutions, and 13 957 observed mutations), which additionally revealed global ALE mutation trends that inform on ALE-derived strain design principles. Such informative trends anticipate ALE-derived strain designs as largely gene-centric, as opposed to noncoding, and composed of a relatively small number of beneficial variants (approximately 6). These results demonstrate how strain design efforts can be enhanced by the meta-analysis of aggregated ALE data.


Escherichia coli K12 , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Laboratories , Mutation/genetics
17.
Mol Med Rep ; 24(4)2021 10.
Article En | MEDLINE | ID: mdl-34396440

Surgical brain injury (SBI) can disrupt the function of the blood­brain barrier (BBB), leading to brain edema and neurological dysfunction. Thus, protecting the BBB and mitigating cerebral edema are key factors in improving the neurological function and prognosis of patients with SBI. The inhibition of WNK lysine deficient protein kinase/STE20/SPS1­related proline/alanine­rich kinase (SPAK) signaling ameliorates cerebral edema, and this signaling pathway regulates the phosphorylation of the downstream Na+­K+­Cl­ cotransporter 1 (NKCC1). Therefore, the purpose of the present study was to investigate the role of SPAK in SBI­induced cerebral edema and to determine whether the SPAK/NKCC1 signaling pathway was involved in SBI via regulating phosphorylation. An SBI model was established in male Sprague­Dawley rats, and the effects of SPAK on the regulation of the NKCC1 signaling pathway on BBB permeability and nerve cell apoptosis by western blotting analysis, immunofluorescence staining, TUNEL staining, Fluoro­Jade C staining, and brain edema and nervous system scores. The results demonstrated that, compared with those in the sham group, phosphorylated (p)­SPAK and p­NKCC1 protein expression levels were significantly increased in the SBI model group. After inhibiting p­SPAK, the expression level of p­NKCC1, neuronal apoptosis and BBB permeability were significantly reduced in SBI model rats. Taken together, these findings suggested that SBI­induced increases in p­SPAK and p­NKCC1 expression exacerbated post­traumatic neural and BBB damage, which may be mediated via the ion­transport­induced regulation of cell edema.


Apoptosis/drug effects , Blood-Brain Barrier , Brain Injuries/metabolism , Protective Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Solute Carrier Family 12, Member 2/metabolism , Animals , Brain , Brain Edema/metabolism , Disease Models, Animal , Male , Protein Serine-Threonine Kinases/genetics , Rats , Rats, Sprague-Dawley , Solute Carrier Family 12, Member 2/genetics
18.
Front Mol Neurosci ; 14: 641993, 2021.
Article En | MEDLINE | ID: mdl-33867933

Surgical brain injury (SBI) triggers microglia to release numerous inflammatory factors, leading to brain edema and neurological dysfunction. Reducing neuroinflammation and protecting the blood-brain barrier (BBB) are key factors to improve the neurological function and prognosis after SBI. Na+-K+-Cl- cotransporter 1 (NKCC1) and nuclear factor κB (NF-κB) have been implicated in the secretion of inflammatory cytokines by microglia in brain injury. This study aimed to establish the role of NKCC1 in inducing inflammation in SBI, as well as to determine whether NKCC1 controls the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) via phosphorylation of NF-κB in microglia, thus affecting BBB permeability and neuronal cell apoptosis. Male Sprague-Dawley (SD) rats were used to establish an SBI model. This study revealed that compared with the sham group, the expression levels of p-NKCC1, p-p65-NF-κB, and related inflammatory factor proteins in SBI model group significantly increased. After p-NKCC1 was inhibited, p-p65-NF-κB, IL-6, IL-1ß, and TNF-α were downregulated, and nerve cell apoptosis and BBB permeability were significantly reduced. These findings suggest that the SBI-induced increase in p-NKCC1 exacerbates neuroinflammation, brain edema, and nerve function injury, which may be mediated by regulating the activity of p65-NF-κB that in turn influences the release of inflammatory factors.

19.
Mol Med Rep ; 23(5)2021 05.
Article En | MEDLINE | ID: mdl-33760209

With­no­lysine kinase 3 (WNK3) is a serine/threonine kinase that functions by regulating downstream signaling molecules. WNK3 mainly regulates intracellular and extracellular Na+, Cl­ and K+ levels by regulating downstream ion transporters, the disruption of which has been associated with cerebral ischemia, epilepsy, glioma and other diseases. In addition, WNK3 was demonstrated to regulate neuronal splicing factor RNA binding fox­1 homolog­1 to influence autism. Over the past 20 years, accumulating evidence has reported that dysfunctional WNK3 signaling was involved in the pathologies of various neurological disorders; therefore, WNK3 has become a promising therapeutic target for ameliorating the corresponding symptoms of such disorders. The present review aimed to provide a general overview of the expression patterns and physiological functions of WNK3 signaling and its pathophysiological roles in neurological diseases, such as epilepsy, ischemic brain injury, intracerebral hemorrhage, autism, glioma and schizophrenia.


Cerebral Hemorrhage/genetics , Ion Transport/genetics , Nervous System Diseases/genetics , Protein Serine-Threonine Kinases/genetics , Brain Injuries/genetics , Brain Injuries/pathology , Cerebral Hemorrhage/pathology , Epilepsy/genetics , Epilepsy/pathology , Humans , Nervous System Diseases/pathology , Neurons/metabolism , Neurons/pathology , Signal Transduction/genetics
20.
Am J Transl Res ; 13(2): 732-742, 2021.
Article En | MEDLINE | ID: mdl-33594322

Protein kinase R-like endoplasmic reticulum kinase (PERK) is an important transmembrane protein in the endoplasmic reticulum (ER). PERK signaling has a critical function in neuronal apoptosis. This work aimed to assess PERK signaling for its function in surgical brain injury (SBI) and to explore the underlying mechanisms. Totally 120 male Sprague Dawley (SD) rats were assessed in an SBI model. The effects of the PERK inhibitor GSK2606414 were examined by Western-blot, immunofluorescent staining, TUNEL staining, fluoro-jade C (FJC) staining and neurological assays in rats with SBI. In this study, p-PERK and p-eIF2α protein amounts were increased upon SBI establishment, peaking at 24 h. Meanwhile, administration of GSK2606414 reversed these effects and prevented neuronal apoptosis. The PERK pathway has a significant function in neuronal apoptosis, and its suppression after SBI promotes the alleviation of brain injury. This suggests that targeting the PERK signaling pathway may represent an efficient therapeutic option for improving prognosis in SBI patients.

...