Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
2.
Cell Death Discov ; 10(1): 355, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117615

ABSTRACT

Primary retroperitoneal liposarcoma (RLPS) is a rare heterogeneous tumor occurring within retroperitoneal space, and its overall survival has not improved much in the past few decades. Based on a small-sample clinical practice at our center, patients with RLPS can greatly benefit from anlotinib and eribulin combination. In this study, we investigated the combinational effect of anlotinib and eribulin on RLPS. In vitro experiments revealed that a low dose of anlotinib significantly enhances the cytotoxic effects of eribulin, leading to a remarkable suppression of RLPS cell proliferation, viability, colony formation, migration, and cell-cycle progression compared to individual drug treatments. At the organoid level, the combination treatment causes the spheroids in Matrigel to disintegrate earlier than the single-drug group. In vivo, RLPS patient-derived xenograft (PDX) models demonstrated that the combination of these two drugs can obviously exert a safe and effective anti-tumor effect. Through transcriptome analysis, we uncovered and validated that the synergistic effect mainly is induced by the endoplasmic reticulum stress (ERS) pathway both in vitro and in vivo. Further analyses indicate that anlotinib plus eribulin treatment results in micro-vessel density and PD-L1 expression alterations, suggesting a potential impact on the tumor microenvironment. This study extensively explored the combination regimen at multiple levels and its underlying molecular mechanism in RLPS, thus providing a foundation for translational medicine research.

3.
J Hazard Mater ; 478: 135421, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126853

ABSTRACT

To eliminate the epidemic of coal-burning-borne endemic arsenism (CBBA), our study organized and implemented comprehensive measures including high-arsenic coal ban, improved cook-stoves, and health education. We also aimed to promote the application value of these measures in preventing and controlling CBBA to the world. From 2004 to 2005, through a stratified random sampling method, we selected 58,256 individuals to investigate the prevalence of CBBA and the arsenic levels in 1287 environmental and biological specimens. The prevalence of CBBA was 19.26 % and significantly associated with the arsenic levels in coal, pepper, corn and hair, which were at or exceeded national upper limits. To timely prevent and control the disease, the comprehensive measures have been implemented since 2005 to present. Comparison and correlation analyses were utilized to evaluate the effectiveness of these measures in reducing the prevalence of CBBA. According to statistics, 73 high-arsenic coal mines were banned and over 99 % households in endemic areas accepted stove improvements and diversified health education. Monitoring studies during 2010-2019 has confirmed that these measures led to a decrease in urine arsenic levels among endemic residents, and they developed novel dietary practices, such as properly drying, storage, and washing of food. Additionally, the awareness rate of CBBA increased from less than 70 % to over 95 %. Finally, the prevalence of CBBA has decreased to 0.153 % investigated by a census involving 2.076 million endemic residents in 2019. In summary, CBBA in northwest China has been successfully controlled through banning on high-arsenic coal, introducing improved cook-stoves, and providing health education.

4.
Commun Biol ; 7(1): 935, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095659

ABSTRACT

The mislocalization of proteins leads to breast cancer, one of the world's most prevalent cancers, which can be identified from immunohistochemical images. Here, based on the deep learning framework, location prediction models were constructed using the features of breast immunohistochemical images. Ultimately, six differentially localized proteins that with stable differentially predictive localization, maximum localization differences, and whose predicted results are not affected by removing a single image are obtained (CCNT1, NSUN5, PRPF4, RECQL4, UTP6, ZNF500). Further verification reveals that these proteins are not differentially expressed, but are closely associated with breast cancer and have great classification performance. Potential mechanism analysis shows that their co-expressed or co-located proteins and RNAs may affect their localization, leading to changes in interactions and functions that further causes breast cancer. They have the potential to help shed light on the molecular mechanisms of breast cancer and provide assistance for its early diagnosis and treatment.


Subject(s)
Breast Neoplasms , Deep Learning , Immunohistochemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Humans , Female , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
5.
Front Pharmacol ; 15: 1398953, 2024.
Article in English | MEDLINE | ID: mdl-39135788

ABSTRACT

Introduction: Sodium zirconium cyclosilicate (SZC) is a nonabsorbed cation-exchanger approved in China for the treatment of hyperkalemia [HK; serum potassium (sK+) levels >5.0 mmol/L]. This is the first real-world study aimed to assess the effectiveness, safety, and treatment patterns of SZC in Chinese patients with HK. Here we present the results of the first interim analysis. Methods: This multicenter, prospective, cohort study included patients aged ≥18 years with documented HK within 1-year before study enrollment day. These patients were followed up for 6 months from the enrollment day after initiating SZC treatment. The treatment was categorized into correction phase (FAS-P1) and maintenance phase (FAS-P2 new and ongoing users). Subgroup analysis was performed in patients on hemodialysis (FAS-H). The primary objective was evaluation of safety profile of SZC; secondary objectives included assessment of treatment patterns of SZC and its effectiveness. Results: Of 421 screened patients, 193, 354, and 162 patients were enrolled in the FAS-P1, FAS-P2, and FAS-H groups, respectively. sK+ levels were reduced significantly from 5.9 mmol/L to 5.0 mmol/L after the correction phase. For the maintenance phase, the mean sK+ levels were maintained at 5.2 mmol/L and 5.0 mmol/L in the FAS-P2 new and ongoing user, respectively, and 5.3 mmol/L in the FAS-H subgroup. A considerable proportion of patients showed normokalemia after 48 h of SZC treatment (FAS-P1:51.3%) which was maintained up to 6 months in the maintenance phase (FAS-P2:44%). SZC was well-tolerated. Conclusion: SZC was effective and safe for the treatment of HK in real-world clinical practice in China.

6.
J Phys Chem Lett ; 15(29): 7524-7532, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39023018

ABSTRACT

Heterojunctions of metal oxides have attracted a great deal of attention as photo (electro) catalysts owing to their excellent photoactivity. While multiple fundamental studies have been dedicated to heteroaggregation, self-assembly of oppositely charged particles to obtain heterojunctions for energy applications has been underexplored. Herein, we report the synthesis of ZnO-TiO2 heterojunctions using the electrostatic self-assembly approach. The synthesized ZnO-TiO2 heterojunctions were characterized by using multiple experimental techniques. Density functional theory calculations were conducted to establish the heterojunction formation mechanism and electronic properties. The ZnO-TiO2 nanohybrid was tested for the photodegradation of rhodamine B dye and water splitting applications. The photocatalytic performance of the ZnO-TiO2 nanohybrid is 3.5 times higher than that of bare ZnO. In addition, the heterostructure exhibited an excellent photocurrent density of 2.4 mA cm-2 at a low onset potential during photoelectrochemical oxygen evolution. The performance improvements are attributed to the formation of the type II heterojunction between ZnO and TiO2, which suppresses carrier recombination and enhances carrier transport, boosting the catalytic activity.

7.
Elife ; 132024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051998

ABSTRACT

The Hippo pathway plays a central role in tissue development and homeostasis. However, the function of Hippo in pancreatic endocrine development remains obscure. Here, we generated novel conditional genetically engineered mouse models to examine the roles of Hippo pathway-mediated YAP1/TAZ inhibition in the development stages of endocrine specification and differentiation. While YAP1 protein was localized to the nuclei in bipotent progenitor cells, Neurogenin 3 expressing endocrine progenitors completely lost YAP1 expression. Using genetically engineered mouse models, we found that inactivation of YAP1 requires both an intact Hippo pathway and Neurogenin 3 protein. Gene deletion of Lats1 and 2 kinases (Lats1&2) in endocrine progenitor cells of developing mouse pancreas using Neurog3Cre blocked endocrine progenitor cell differentiation and specification, resulting in reduced islets size and a disorganized pancreas at birth. Loss of Lats1&2 in Neurogenin 3 expressing cells activated YAP1/TAZ transcriptional activity and recruited macrophages to the developing pancreas. These defects were rescued by deletion of Yap1/Wwtr1 genes, suggesting that tight regulation of YAP1/TAZ by Hippo signaling is crucial for pancreatic endocrine specification. In contrast, deletion of Lats1&2 using ß-cell-specific Ins1CreER resulted in a phenotypically normal pancreas, indicating that Lats1&2 are indispensable for differentiation of endocrine progenitors but not for that of ß-cells. Our results demonstrate that loss of YAP1/TAZ expression in the pancreatic endocrine compartment is not a passive consequence of endocrine specification. Rather, Hippo pathway-mediated inhibition of YAP1/TAZ in endocrine progenitors is a prerequisite for endocrine specification and differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hippo Signaling Pathway , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Islets of Langerhans/metabolism , Islets of Langerhans/embryology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Acyltransferases , Tumor Suppressor Proteins
8.
Sci Rep ; 14(1): 16331, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009689

ABSTRACT

To determine the independent risk factors of cardiopulmonary exercise test (CPET) parameters related to adverse prognostic events within 5 years in patients undergoing percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI), and establish a prediction model for the occurrence of adverse events within 5 years to provide a reference for cardiac rehabilitation training. From August 2015 to December 2021, patients who underwent PCI for AMI and completed CPET within 1-2 weeks after surgery before discharge from the Department of Cardiovascular Medicine of Zhengzhou Central Hospital Affiliated to Zhengzhou University, Henan Provincial Hospital of Traditional Chinese Medicine, and Anyang District Hospital were selected as participants. Univariate and multivariate analyses were used to screen for independent risk factors associated with 5-year adverse events. Feature importance was interpreted using SHapley Additive exPlanations (SHAP), and a logistic regression model was established for prediction. A receiver operating characteristic (ROC) curve was constructed to evaluate the performance of the prediction model. Calibration was assessed by the Hosmer-Lemeshow test and the calibration curve. In total, 375 patients met the inclusion criteria. Based on whether adverse events occurred during the 5-year follow-up period, the patients were divided into two groups: the event group (n = 53) and the non-event group (n = 322). Peak oxygen uptake (peakVO2), carbon dioxide ventilation equivalent slope (VE/VCO2slop), and peak end-tidal carbon dioxide partial pressure (PETCO2) were three independent risk factors for re-acute myocardial infarction (re-AMI), heart failure (HF), and even death after PCI for AMI (P < 0.05). The SHAP plots demonstrated that the significant contributors to model performance were related to peakVO2, VE/VCO2slop, and PETCO2. The risk of adverse events was significantly reduced when the peakVO2 was ≥ 20 mL/kg/min and the VE/VCO2slop was < 33. The ROC curves of the three models were drawn, including the no-event and event groups, re-AMI group, and HF group, which performed well, with AUC of 0.894, 0.760, and 0.883, respectively. The Hosmer-Lemeshow test showed that the three models were a good fit (P > 0.05). The calibration curve of the three models was close to the ideal diagonal lines. CPET parameters can predict the prognosis of adverse events within 5 years after PCI in patients with AMI and provide a theoretical basis for cardiac rehabilitation training.


Subject(s)
Exercise Test , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Male , Female , Middle Aged , Myocardial Infarction/physiopathology , Myocardial Infarction/diagnosis , Prognosis , Exercise Test/methods , Aged , Risk Factors , ROC Curve
9.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003263

ABSTRACT

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Subject(s)
Cell Differentiation , Receptors, Notch , Signal Transduction , Tissue Engineering , Receptors, Notch/metabolism , Tissue Engineering/methods , Animals , Humans , Mice , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Ligands , Tissue Scaffolds/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , HEK293 Cells
10.
Lancet Rheumatol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39029487

ABSTRACT

BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is key for policy making. Low back pain is the leading cause of disability in terms of years lived with disability (YLDs). Due to sparse data, a current limitation of GDB is that a uniform severity distribution is presumed based on 12-Item Short Form Health Survey scores derived from US Medical Expenditure Panel Surveys (MEPS). We present a novel approach to estimate the effect of exposure to health interventions on the severity of low back pain by country and over time. METHODS: We extracted treatment effects for ten low back pain interventions from the Cochrane Database, combining these with coverage data from the MEPS to estimate the hypothetical severity in the absence of treatment in the USA. Severity across countries was then graded using the Health Access and Quality Index, allowing estimates of averted and avoidable burden under various treatment scenarios. FINDINGS: We included 210 trials from 36 Cochrane systematic reviews in the network analysis. The pooled effect sizes (measured as a standardised mean difference) for the most effective intervention classes were -0·460 (95% uncertainty interval -0·606 to -0·309) for a combination of psychological and physical interventions and -0·366 (-0·525 to -0·207) for surgery. Globally, access to treatment averted an estimated 17·6% (14·8 to 23·8) of the low back pain burden in 2020. If all countries had provided access to treatment at a level estimated for Iceland with the highest Health Access and Quality Index score, an extra 9·1% (6·4 to 11·2) of the burden of low back pain could be avoided. Even with full coverage of optimal treatment, a large proportion (65·9% [56·9 to 70·4]) of the low back pain burden is unavoidable. INTERPRETATION: This methodology fills an important shortcoming in the GBD by accounting for low back pain severity variations over time and between countries. Assumptions of unequal treatment access increased YLD estimates in resource-poor settings, with a modest decrease in countries with higher Health Access and Quality Index scores. Nonetheless, the large proportion of unavoidable burden indicates poor intervention efficacy. This method, applicable to other GBD conditions, provides policy makers with insights into health gains from improved treatment and underscores the importance of investing in research for new interventions. FUNDING: Bill and Melinda Gates Foundation and Queensland Health.

11.
Bioorg Chem ; 150: 107590, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955003

ABSTRACT

The c-ros oncogene 1 (ROS1), an oncogenic driver, is known to induce non-small cell lung cancer (NSCLC) when overactivated, particularly through the formation of fusion proteins. Traditional targeted therapies focus on inhibiting ROS1 activity with ROS 1 inhibitors to manage cancer progression. However, a new strategy involving the design of protein degraders offers a more potent approach by completely degrading ROS1 fusion oncoproteins, thereby effectively blocking their kinase activity and enhancing anti-tumour potential. Utilizing PROteolysis-TArgeting Chimera (PROTAC) technology and informed by molecular docking and rational design, we report the first ROS1-specific PROTAC, SIAIS039. This degrader effectively targets multiple ROS1 fusion oncoproteins (CD74-ROS1, SDC4-ROS1 and SLC34A2-ROS1) in engineered Ba/F3 cells and HCC78 cells, demonstrating anti-tumour effects against ROS1 fusion-driven cancer cells. It suppresses cell proliferation, induces cell cycle arrest, and apoptosis, and inhibits clonogenicity. The anti-tumour efficacy of SIAIS039 surpasses two approved drugs, crizotinib and entrectinib, and matches that of the top inhibitors, including lorlatinib and taletrectinib. Mechanistic studies confirm that the degradation induced by 039 requires the participation of ROS1 ligands and E3 ubiquitin ligases, and involves the proteasome and ubiquitination. In addition, 039 exhibited excellent oral bioavailability in a mouse xenograft model, highlighting its potential for clinical application. In conclusion, our study presents a promising and novel therapeutic strategy for ROS1 fusion-positive NSCLC by targeting ROS1 fusion oncoproteins for degradation, laying the foundation for the development of further PROTAC and offering hope for patients with ROS1 fusion-positive NSCLC.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Discovery , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Humans , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Animals , Molecular Structure , Mice , Structure-Activity Relationship , Apoptosis/drug effects , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Proteolysis/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Mice, Nude
12.
Eur J Surg Oncol ; 50(9): 108477, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38954879

ABSTRACT

BACKGROUND AND AIMS: The concept of textbook outcomes (TOs) has gained increased attention as a critical metric to assess the quality and success of outcomes following complex surgery. A simple yet effective scoring system was developed and validated to predict risk of not achieving textbook outcomes (non-TOs) following hepatectomy for hepatocellular carcinoma (HCC). METHODS: Using a multicenter prospectively collected database, risk factors associated with non-TO among patients who underwent hepatectomy for HCC were identified. A predictive scoring system based on factors identified from multivariate regression analysis was used to risk stratify patients relative to non-TO. The score was developed using 70 % of the overall cohort and validated in the remaining 30 %. RESULTS: Among 3681 patients, 1458 (39.6 %) failied to experience a TO. Based on the derivation cohort, obesity, American Society of Anaesthesiologists score(ASA score), Child-Pugh grade, tumor size, and extent of hepatectomy were identified as independent predictors of non-TO. The scoring system ranged from 0 to 10 points. Patients were categorized into low (0-3 points), intermediate (4-6 points), and high risk (7-10 points) of non-TO. In the validation cohort, the predicted risk of developing non-TOs was 39.0 %, which closely matched the observed risk of 39.9 %. There were no differences among the predicted and observed risks within the different risk categories. CONCLUSIONS: A novel scoring system was able to predict risk of non-TO accurately following hepatectomy for HCC. The score may enable early identification of individuals at risk of adverse outcomes and inform surgical decision-making, and quality improvement initiatives.

13.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005370

ABSTRACT

Introduction: Ascaris lumbricoides and Ascaris suum are parasitic nematodes that primarily infest the small intestines of humans and pigs, respectively. Ascariasis poses a significant threat to human health and swine health. Understanding Ascaris larval development is crucial for developing novel therapeutic interventions that will prevent ascariasis in both humans and pigs. This study aimed to characterize the excretory-secretory (ES) proteome of different Ascaris suum larval stages (L3-egg, L3-lung, L3-trachea) to identify potential targets for intervention to prevent Ascaris -induced global morbidity. Methods: Stage-specific larvae were isolated, cultured in vitro and ES-product was collected. Third-stage Ascaris larvae (L3) were isolated from embryonated eggs (L3-egg), isolated from the lungs of Balb/c mice infected with Ascaris suum eggs at day 8 post infection (L3-lungs) and isolated from the trachea of Balb/c mice infected with Ascaris suum eggs at day 12 post infection (L3-trachea). ES products were obtained by culturing larvae. Proteomic analysis was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatic tools including MaxQuant, Perseus, and Andromeda, following a detailed protocol available on GitHub. The analysis encompassed peptide identification, scoring, and quantification against an organism-specific database, with subsequent quality control, correlation assessment, and differential abundance determination using the Amica algorithm. Results: A total of 58 unique proteins were identified in the ES products. Fourteen proteins were common across all stages, while others were stage-specific. Principal component analysis revealed distinct protein profiles for each stage, suggesting qualitatively different proteomes. Gene ontology analysis indicated stage-specific GO enrichment of specific protein classes, such as nuclear proteins in L3-egg ES products and metabolic enzymes in L3-lung and L3-trachea ES products. Discussion: This study revealed stage-specific differences in the composition of Ascaris ES products. Further investigation into the functional roles of these proteins and their interactions with host cells is crucial for developing novel therapeutic and diagnostic strategies against ascariasis.

14.
J Cancer Res Clin Oncol ; 150(7): 359, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044013

ABSTRACT

BACKGROUND: In single-isocenter multitarget stereotactic body radiotherapy (SBRT), geometric miss risks arise from uncertainties in intertarget position. However, its assessment is inadequate, and may be interfered by the reconstructed tumor position errors (RPEs) during simulated CT and cone beam CT (CBCT) acquisition. This study aimed to quantify intertarget position variations and assess factors influencing it. METHODS: We analyzed data from 14 patients with 100 tumor pairs treated with single-isocenter SBRT. Intertarget position variation was measured using 4D-CT simulation to assess the intertarget position variations (ΔD) during routine treatment process. Additionally, a homologous 4D-CBCT simulation provided RPE-free comparison to determine the impact of RPEs, and isolating purely tumor motion induced ΔD to evaluate potential contributing factors. RESULTS: The median ΔD was 4.3 mm (4D-CT) and 3.4 mm (4D-CBCT). Variations exceeding 5 mm and 10 mm were observed in 31.1% and 5.5% (4D-CT) and 20.4% and 3.4% (4D-CBCT) of fractions, respectively. RPEs necessitated an additional 1-2 mm safety margin. Intertarget distance and breathing amplitude variability showed weak correlations with variation (Rs = 0.33 and 0.31). The ΔD differed significantly by locations (upper vs. lower lobe and right vs. Left lung). Notably, left lung tumor pairs exhibited the highest risk. CONCLUSIONS: This study provide a reliable way to assess intertarget position variation by using both 4D-CT and 4D-CBCT simulation. Consequently, single-isocenter SBRT for multiple lung tumors carries high risk of geometric miss. Tumor motion and RPE constitute a substantial portion of intertarget position variation, requiring correspondent strategies to minimize the intertarget uncertainties.


Subject(s)
Cone-Beam Computed Tomography , Four-Dimensional Computed Tomography , Lung Neoplasms , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiosurgery/methods , Four-Dimensional Computed Tomography/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Male , Female , Aged , Computer Simulation , Middle Aged
15.
Psychiatry Res ; 339: 116074, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986177

ABSTRACT

BACKGROUND: Physical Exercise Therapy (PET) is increasingly applied in the treatment of Autism Spectrum Disorders (ASD), yet the empirical evidence supporting its efficacy remains ambiguous. This systematic review and meta-analysis aimed to investigate the effectiveness of PET for individuals with ASD, providing evidence-based support for clinical and scientific research. METHODS: We systematically searched four international databases (Medline via PubMed, Embase, Cochrane Libraries, and Web of Science) and three Chinese databases (CNKI, Wanfang, and VIP Libraries) up to July 31, 2023. The search was conducted in both English and Chinese for original research articles employing randomized-controlled-trial (RCT) designs to study PET's effects on individuals diagnosed with ASD according to DSM or other established criteria. Co-primary outcomes focused on the overall severity of autism, while secondary outcomes included measures of stereotyped behaviors, social deficits, social skills, and executive functioning. Data from the included studies were synthesized and analyzed using RevMan 5.4. This systematic review is registered with PROSPERO (CRD42023443951). RESULTS: A total of 28 RCTs comprising 1081 participants were analyzed. Of these, only three studies met high-quality standards. Compared to control groups, PET showed improvement in at least one core symptom of autism, including Motor Performance (SMD=1.72, 95%CI[1.01, 2.44], I2=90%), Restricted Repetitive Behaviors (SMD=-0.81, 95%CI[-1.00, -0.62], I2=0%), Social Dysfunction (SMD=-0.76, 95%CI[-1.06, -0.46], I2=47%). CONCLUSIONS: PET may offer benefits in reducing the overall severity and associated symptoms in individuals with ASD. However, given the high overall risk of bias in the included studies, these findings should be interpreted with caution.

16.
Int Urol Nephrol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963512

ABSTRACT

The immune system can lead to a variety of renal diseases through direct or indirect mechanisms. In immune-mediated nephropathy, though standardized treatment, there are still a small number of patients with further decline in renal function, which may even progress to renal failure; sodium-glucose cotransporter protein 2 (SLC5A2,SGLT2) inhibitors not only can significantly reduce blood glucose, but also have an additional protective effect on the kidneys and the heart; this review concludes the potential mechanism of the renal protective effect of SGLT2i and the new advances in the recent years in common immune-mediated nephropathies, which can provide new theoretical references to optimize the therapeutic strategy of common immune-mediated nephropathies.

17.
J Environ Manage ; 365: 121601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959771

ABSTRACT

Tetracycline (TC) is widely present in the environment, and adsorption technology is a potential remediation method. S/N co-doped tea residue biochar (SNBC) was successfully prepared by hydrothermal carbonization method using tea residue as raw material. S was doped by Na2S2O3·5H2O, and N was doped by N in tea residue. The adsorption efficiency of SNBC could reach 94.16% when the concentration of TC was 100 mg L-1. The adsorption effect of SNBC on TC was 9.38 times more than that of unmodified biochar. Tea biochar had good adsorption effect at pH 4-9. The maximum adsorption capacity of 271 mg g-1 was calculated by the Langmuir isotherm model. The adsorption mechanism involved many mechanisms such as pore filling, π-π interaction and hydrogen bonding. The adsorbent prepared in this study could be used as an effective adsorbent in the treatment of TC wastewater.


Subject(s)
Charcoal , Tea , Tetracycline , Water Pollutants, Chemical , Charcoal/chemistry , Tetracycline/chemistry , Adsorption , Tea/chemistry , Water Pollutants, Chemical/chemistry , Nitrogen/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Wastewater/chemistry
18.
ACS Mater Au ; 4(4): 354-384, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39006396

ABSTRACT

The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.

19.
Nurs Crit Care ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011651

ABSTRACT

BACKGROUND: Implicit rationing of nursing care is defined as the withholding of necessary nursing measures for patients because of a lack of nursing resources. However, no studies have explored the experience of decision-making about implicit rationing of nursing care in an intensive care unit (ICU). AIM: To explore the process of ICU nurses' decisions and judgement based on the conceptual framework of implicit rationing of nursing care. STUDY DESIGN: A qualitative study was undertaken between June 2020 and September 2020. The data collection methods were participative observation and interview. Eighteen ICU nurses participated in interviews. A thematic analysis was performed for the data analysis. RESULTS: The following five themes emerged: assessment of the condition and nature of nursing and time taken; strategies for setting personal priorities; plan implementation under mitigation strategy; existing nursing in reality; evaluation of the implementation of implicit rationing care. Nurses choose different strategies during plan implementation. CONCLUSIONS: In the absence of explicit guidelines on rationing nursing care, nurses often rely on intuitive and situational decision-making processes for setting priorities. Given the vulnerability of ICU patients and the absence of family caregivers, nurses bear a heightened ethical responsibility to provide care. Establishing a positive nursing culture is essential. It is both reasonable and effective to organize work by accurately quantifying workload, improving staffing levels and optimizing scheduling methods. These themes align with the decision-making process outlined in the conceptual framework and offer fresh perspectives. RELEVANCE TO CLINICAL PRACTICE: Nurses have a greater responsibility to provide care in an ethical manner and to increase awareness of the importance of holistic nursing care for the patient, that is to raise awareness of the importance of care that is often missed. Nurses actively adopt strategies to reduce implicit rationing of nursing care, including teamwork, organized nursing, working overtime and ignoring quality. The findings highlight the importance of creating a positive nursing culture that encourages nurses to adopt positive strategies.

20.
Burns Trauma ; 12: tkae013, 2024.
Article in English | MEDLINE | ID: mdl-38957661

ABSTRACT

The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL