Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Eur J Intern Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955589

ABSTRACT

BACKGROUND: Metabolic disorders exhibit strong inflammatory underpinnings and vice versa. This study aimed to investigate the association between metabolic health status, genetic predisposition, and the risk of inflammatory bowel disease (IBD), and to explore the potential benefits of maintaining ideal metabolic status for individuals with a predetermined genetic risk of IBD. METHOD: This population-based prospective study included 385,820 unrelated European descent participants from the UK Biobank. Using multivariable Cox regression, we assessed the relationship of metabolic phenotypes with risk of IBD and its subtypes. We also developed a polygenic risk score to examine how metabolic health status interacted with genetic risk in relation to IBD risk. RESULTS: During the follow-up period of 4,328,895 person-years, 2,044 newly-diagnosed IBD cases were identified. Higher genetic risk and an increasing number of abnormal metabolic phenotypes were associated with elevated IBD risk (p-trend <0.001). Individuals with high genetic risk and poor metabolic health had a significantly higher risk of IBD (HR=4.56, 95 % CI=3.27-6.36) compared to those with low genetic risk and ideal metabolic health. These results remained consistent for IBD subtypes. Maintaining ideal metabolic status reduced IBD risk within each genetic risk category and jointly decreased subsequent risk by 40 % in high genetic risk individuals. CONCLUSION: Our study reveals a combined impact of poor metabolic health and genetic risk on IBD incidence. Those with low genetic risk and optimal metabolic health exhibit the lowest IBD risk, offering insights into potential management strategies for individuals at predefined genetic risk.

2.
J Colloid Interface Sci ; 676: 560-568, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39053404

ABSTRACT

Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.

3.
BMC Genomics ; 25(1): 705, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030501

ABSTRACT

At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRß CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.


Subject(s)
Evolution, Molecular , Mammals , Animals , Mammals/genetics , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics , Phylogeny , High-Throughput Nucleotide Sequencing , Mice
4.
BMC Pulm Med ; 24(1): 357, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048959

ABSTRACT

BACKGROUND: Society is burdened with stroke-associated pneumonia (SAP) after intracerebral haemorrhage (ICH). Cerebral small vessel disease (CSVD) complicates clinical manifestations of stroke. In this study, we redefined the CSVD burden score and incorporated it into a novel radiological-clinical prediction model for SAP. MATERIALS AND METHODS: A total of 1278 patients admitted to a tertiary hospital between 1 January 2010 and 31 December 2019 were included. The participants were divided into training and testing groups using fivefold cross-validation method. Four models, two traditional statistical models (logistic regression and ISAN) and two machine learning models (random forest and support vector machine), were established and evaluated. The outcomes and baseline characteristics were compared between the SAP and non-SAP groups. RESULTS: Among the of 1278 patients, 281(22.0%) developed SAP after their first ICH. Multivariate analysis revealed that the logistic regression (LR) model was superior in predicting SAP in both the training and testing groups. Independent predictors of SAP after ICH included total CSVD burden score (OR, 1.29; 95% CI, 1.03-1.54), haematoma extension into ventricle (OR, 2.28; 95% CI, 1.87-3.31), haematoma with multilobar involvement (OR, 2.14; 95% CI, 1.44-3.18), transpharyngeal intubation operation (OR, 3.89; 95% CI, 2.7-5.62), admission NIHSS score ≥ 10 (OR, 2.06; 95% CI, 1.42-3.01), male sex (OR, 1.69; 95% CI, 1.16-2.52), and age ≥ 67 (OR, 2.24; 95% CI, 1.56-3.22). The patients in the SAP group had worse outcomes than those in the non-SAP group. CONCLUSION: This study established a clinically combined imaging model for predicting stroke-associated pneumonia and demonstrated superior performance compared with the existing ISAN model. Given the poor outcomes observed in patients with SAP, the use of individualised predictive nomograms is vital in clinical practice.


Subject(s)
Cerebral Hemorrhage , Machine Learning , Pneumonia , Stroke , Humans , Male , Female , Aged , Middle Aged , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/complications , Stroke/complications , Stroke/diagnostic imaging , Pneumonia/diagnostic imaging , Pneumonia/complications , Retrospective Studies , Logistic Models , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Tomography, X-Ray Computed , Risk Factors , Models, Statistical , Aged, 80 and over
5.
Stem Cell Res Ther ; 15(1): 196, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956734

ABSTRACT

Over the past decade, we have witnessed the development of cell transplantation as a new strategy for repairing spinal cord injury (SCI). However, due to the complexity of the central nervous system (CNS), achieving successful clinical translation remains a significant challenge. Human umbilical cord mesenchymal stem cells (hUMSCs) possess distinct advantages, such as easy collection, lack of ethical concerns, high self-renewal ability, multilineage differentiation potential, and immunomodulatory properties. hUMSCs are promising for regenerating the injured spinal cord to a significant extent. At the same time, for advancing SCI treatment, the appropriate benefit and risk evaluation methods play a pivotal role in determining the clinical applicability of treatment plans. Hence, this study discusses the advantages and risks of hUMSCs in SCI treatment across four dimensions-comprehensive evaluation of motor and sensory function, imaging, electrophysiology, and autonomic nervous system (ANS) function-aiming to improve the rationality of relevant clinical research and the feasibility of clinical translation.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Umbilical Cord , Humans , Spinal Cord Injuries/therapy , Mesenchymal Stem Cell Transplantation/methods , Umbilical Cord/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Risk Assessment , Cell Differentiation , Animals
6.
BMC Med ; 22(1): 285, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972971

ABSTRACT

BACKGROUND: This study employs systematic review and meta-analysis to explore the incidence and characteristics of spinal cord injury (SCI) between 2000 and 2021, aiming to provide the most recent and comprehensive data support for the prevention, diagnosis, treatment, and care of SCI. METHODS: Systematic searches were conducted on epidemiological studies of SCI published between January 1, 2000, and March 29, 2024. Meta-analysis, subgroup analysis, meta-regression, publication bias detection, and literature quality assessment were extensively utilized. RESULTS: The pooled results from 229 studies indicated that the overall incidence rate of SCI was 23.77 (95% CI, 21.50-26.15) per million people, with traumatic spinal cord injuries (TSCI) at a rate of 26.48 (95% CI, 24.15-28.93) per million people, and non-traumatic spinal cord injuries (NTSCI) at a rate of 17.93 (95% CI, 13.30-23.26) per million people. The incidence of TSCI exhibited a marked age-related increase and was significantly higher in community settings compared to hospital and database sources. Males experienced TSCI at a rate 3.2 times higher than females. Between 2000 and 2021, the incidence of TSCI remained consistently high, between 20 and 45 per million people, whereas NTSCI incidence has seen a steady rise since 2007, stabilizing at a high rate of 25-35 per million people. Additionally, the incidence of TSCI in developing countries was notably higher than that in developed countries. There were significant differences in the causes of injury, severity, injury segments, gender, and age distribution among the TSCI and NTSCI populations, but the proportion of male patients was much higher than that of female patients. Moreover, study quality, country type, and SCI type contributed to the heterogeneity in the meta-analysis. CONCLUSIONS: The incidence rates of different types of SCI remain high, and the demographic distribution of SCI patients is changing, indicating a serious disease burden on healthcare systems and affected populations. These findings underscore the necessity of adopting targeted preventive, therapeutic, and rehabilitative measures based on the incidence and characteristics of SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/epidemiology , Humans , Incidence , Global Health , Female , Male
7.
ACS Biomater Sci Eng ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968389

ABSTRACT

Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work, we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalizations to better understand how simple modifications can be used to reduce the nonspecific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types nonspecifically degraded peptides as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 h, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with the cells. We found that simple modifications to the termini could significantly reduce or completely abolish nonspecific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed nonspecific degradation. We also found that there were minimal differences in peptide degradation across cell donors and that sequences mimicking different peptides commonly used to functionalize biomaterials all had significant nonspecific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.

8.
iScience ; 27(7): 110017, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39021804

ABSTRACT

The insulin receptor (INSR, IR) has two isoforms, IRA and IRB, through alternative splicing. However, their distinct functions in vivo remain unclear. Here we generated ß cell-specific IRB knockout (KO) mice (ßIRBKO). The KO mice displayed worsened hyperinsulinemia and hyperproinsulinemia in diet-induced obesity due to impaired proinsulin processing in ß cells. Mechanistically, loss of IRB suppresses eukaryotic translation initiation factor 4G1 (eIF4G1) by stabilizing the transcriptional receptor sterol-regulatory element binding protein 1 (SREBP1). Moreover, excessive autocrine proinsulin in ßIRBKO mice enhances the activity of extracellular signal-regulated kinase (ERK) through the remaining IRA to further stabilize nuclear SREBP1, forming a feedback loop. Collectively, our study paves the way to dissecting the isoform-specific function of IR in vivo and highlights the important roles of IRB in insulin processing and protecting ß cells from lipotoxicity in obesity.

9.
Mol Nutr Food Res ; : e2400003, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072916

ABSTRACT

SCOPE: Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from Pueraria lobata, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice. METHODS AND RESULTS: In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKß/NF-κB pathways, leading to reduction of TNF-α and IL-6. CONCLUSION: These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKß/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.

10.
ACS Nano ; 18(26): 17065-17074, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885193

ABSTRACT

Polaritons, hybrid light and matter waves, offer a platform for subwavelength on-chip light manipulation. Recent works on planar refraction and focusing of polaritons all rely on heterogeneous components with different refractive indices. A fundamental question, thus, arises whether it is possible to configure two-dimensional monolithic polariton lenses based on a single medium. Here, we design and fabricate a type of monolithic polariton lens by directly sculpting an individual hyperbolic van der Waals crystal. The in-plane polariton focusing through sculptured step-terraces is triggered by geometry-induced symmetry breaking of momentum matching in polariton refractions. We show that the monolithic polariton lenses can be robustly tuned by the rise of van der Waals terraces and their curvatures, achieving a subwavelength focusing resolution down to 10% of the free-space light wavelength. Fusing with transformation optics, monolithic polariton lenses with gradient effective refractive indices, such as Luneburg lenses and Maxwell's fisheye lenses, are expected by sculpting polaritonic structures with gradually varied depths. Our results bear potential in planar subwavelength lenses, integrated optical circuits, and photonic chips.

11.
J Hazard Mater ; 474: 134826, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852248

ABSTRACT

Phenylpropanoid biosynthesis plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, few reports have dabbled in physiological mechanisms of such super pathway regulating Cd accumulation in plants. Herein, by integrating transcriptomic, histological and molecular biology approaches, the present study dedicated to clarify molecular mechanism on how rice adapt to Cd stress via phenylpropanoid biosynthesis. Our analysis identified that the enhancement of phenylpropanoid biosynthesis was as a key response to Cd stress. Intriguingly, POD occupied a significant part in this process, with the number of POD related genes accounted for 26/29 of all upregulated genes in phenylpropanoid biosynthesis. We further used SHAM (salicylhydroxamic acid, the POD inhibitor) to validate that POD exhibited a negative correlation with the Cd accumulation in rice tissues, and proposed two intrinsic molecular mechanisms on POD in contributing to Cd detoxification. One strategy was that POD promoted the formation of lignin and CSs both in endodermis and exodermis for intercepting Cd influx. In detail, inhibited POD induced by external addition of SHAM decreased the content of lignin by 50.98-66.65 % and delayed percentage of the DTIP-CS to root length by 39.17-104.51 %. The other strategy was expression of transporter genes involved in Cd uptake, including OsIRT1, OsIRT2, OsZIP1 and OsZIP, negatively regulated by POD. In a word, our findings firstly draws a direct link between POD activity and the Cd accumulation, which is imperative for the breeding of rice with low-Cd-accumulating capacity in the future.


Subject(s)
Cadmium , Oryza , Oryza/metabolism , Oryza/genetics , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Peroxidase/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Lignin/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity
12.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874794

ABSTRACT

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

13.
Sci Rep ; 14(1): 14922, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942788

ABSTRACT

Studying the relationships between vegetation cover and geography in the Mongolian region of the Yellow River Basin will help to optimize local vegetation recovery strategies and achieve harmonious human relations. Based on MOD13Q1 data, the spatial and temporal variations in fractional vegetation cover (FVC) in the Mongolian Yellow River Basin during 2000-2020 were investigated via trend and correlative analysis. The results are as follows: (1) From 2000 to 2020, the vegetation cover in the Mongolian section of the Yellow River Basin recovered well, the mean increase in the FVC was 0.001/a, the distribution of vegetation showed high coverage in the southeast and low coverage in the northwest, and 31.19% of the total area showed an extremely significant and significant increase in vegetation cover. (2) The explanatory power of each geographic factor significantly differed. Precipitation, soil type, air temperature, land use type and slope were the main driving factors influencing the spatial distribution of the vegetation cover, and for each factor, the explanatory power of its interaction with other factors was greater than that of the single factor. (3) The correlation coefficients between FVC and temperature and precipitation are mainly positive. The mean value of the FVC and its variation trend are characterized by differences in terrain and soil characteristics, population density and land use. Land use conversion can reflect the characteristics of human activities, and positive effects, such as returning farmland to forest and grassland and afforestation of unused land, promote the significant improvement of regional vegetation, while negative effects, such as urban expansion, inhibit the growth of vegetation.


Subject(s)
Conservation of Natural Resources , Rivers , China , Conservation of Natural Resources/methods , Humans , Ecosystem , Geography , Environmental Monitoring/methods , Soil , Plants , Mongolia
14.
Animals (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929346

ABSTRACT

Continuous ovarian imaging has been proven to be a method for monitoring the development of follicles in vivo. The aim of this study was to evaluate the efficacy of combining ultrasound bio-microscopy (UBM) with an intravital window for follicle imaging in rabbits and to monitor the ovarian dynamic processes. New Zealand White female rabbits (n = 10) received ovarian translocation to a subcutaneous position. The ovarian tissue was sutured onto the abdominal muscles and covered with an intravital window for the continuous monitoring of the follicles using UBM. Results show that physiological changes (red blood cell and white blood cell counts, feed intake, and body weight change) in rabbits induced by surgery returned to normal physiological levels in one week. Furthermore, UBM could provide high-resolution imaging of follicles through the intravital window. Daily monitoring of ovarian dynamic processes for 6 days displayed variabilities in follicle counts and size. Collectively, these results provide a relatively new method to monitor ovarian dynamic processes and to understand the reproductive physiology of female rabbits.

15.
bioRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712239

ABSTRACT

Peptides are widely used within biomaterials to improve cell adhesion, incorporate bioactive ligands, and enable cell-mediated degradation of the matrix. While many of the peptides incorporated into biomaterials are intended to be present throughout the life of the material, their stability is not typically quantified during culture. In this work we designed a series of peptide libraries containing four different N-terminal peptide functionalizations and three C-terminal functionalization to better understand how simple modifications can be used to reduce non-specific degradation of peptides. We tested these libraries with three cell types commonly used in biomaterials research, including mesenchymal stem/stromal cells (hMSCs), endothelial cells, and macrophages, and quantified how these cell types non-specifically degraded peptide as a function of terminal amino acid and chemistry. We found that peptides in solution which contained N-terminal amines were almost entirely degraded by 48 hours, irrespective of the terminal amino acid, and that degradation occurred even at high peptide concentrations. Peptides with C-terminal carboxylic acids also had significant degradation when cultured with cells. We found that simple modifications to the termini could significantly reduce or completely abolish non-specific degradation when soluble peptides were added to cells cultured on tissue culture plastic or within hydrogel matrices, and that functionalizations which mimicked peptide conjugations to hydrogel matrices significantly slowed non-specific degradation. We also found that there were minimal differences across cell donors, and that sequences mimicking different peptides commonly-used to functionalized biomaterials all had significant non-specific degradation. Finally, we saw that there was a positive trend between RGD stability and hMSC spreading within hydrogels, indicating that improving the stability of peptides within biomaterial matrices may improve the performance of engineered matrices.

16.
Front Nutr ; 11: 1364739, 2024.
Article in English | MEDLINE | ID: mdl-38757131

ABSTRACT

Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.

17.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719039

ABSTRACT

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Plant Growth Regulators , Pseudomonas fluorescens , Sedum , Soil Pollutants , Soil , Sedum/metabolism , Soil Pollutants/metabolism , Metals, Heavy/metabolism , Plant Growth Regulators/metabolism , Soil/chemistry , Pseudomonas fluorescens/metabolism , Soil Microbiology
18.
Microsyst Nanoeng ; 10: 58, 2024.
Article in English | MEDLINE | ID: mdl-38725436

ABSTRACT

This work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.4 MHz is used for measuring the z-axis magnetic field. The different configurations of applied excitation currents ensure good cross-interference immunity among the three axes. Compared to conventional capacitive LFMs, the proposed piezoelectric LFM utilizes strong electromechanical coupling from the AlN layer, which allows it to operate at ambient pressure with a high sensitivity. To understand and analyze the measured results, a novel equivalent circuit model for the proposed LFM is also reported in this work, which serves to separate the effect of Lorentz force from the unwanted capacitive feedthrough. The demonstrated 3-axis LFM exhibits measured magnetic responsivities of 1.74 ppm/mT, 1.83 ppm/mT and 6.75 ppm/mT in the x-, y- and z-axes, respectively, which are comparable to their capacitive counterparts.

19.
Small ; : e2401360, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708800

ABSTRACT

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

20.
Int J Phytoremediation ; : 1-11, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780520

ABSTRACT

Moso bamboo is excellent candidate for cadmium (Cd)/lead (Pb) phytoremediation, while rhizosphere microbiome has significant impact on phytoremediation efficiency of host plant. However, little is known about the rhizosphere bacterial communities of moso bamboo in Cd/Pb contaminated soils. Therefore, this study investigated the assembly patterns and key taxa of rhizosphere bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils, by field sampling, chemical analysis, and 16S rRNA gene sequencing. The results indicated α-diversity between Cd/Pb polluted and unpolluted soils showed a similar pattern (p > 0.05), while ß-diversity was significantly different (p < 0.05). The relative abundance analysis indicated α-proteobacteria (37%) and actinobacteria (31%) were dominant in Cd/Pb polluted soils, while γ-proteobacteria (40%) and α-proteobacteria (22%) were dominant in unpolluted soils. Co-occurrence network analysis indicated microbial networks were less complex and more negative in polluted soils than in unpolluted soils. Mantel analysis indicated soil available phosphorus, organic matter, and available Pb were the most important environmental factors affecting microbial community structure. Correlation analysis showed 11 bacterial genera were significantly positively related to Cd/Pb. Overall, this study identified the bacterial community composition of bamboo rhizosphere in responding to Cd/Pb contamination and provides a theoretical basis for microbe-assistant phytoremediation in the future.


To date, little is known about the bacterial communities in the rhizosphere of moso bamboo under Cd and Pb multiple stresses. This study investigated the assembly patterns and key taxa of rhizospheric bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils. It was found that the bacterial community structure in bamboo rhizosphere is easily influenced by soil chemical environment, such as fertilities and heavy metals. The key bacterial taxa identified here could be target microbe in future microbe-assistant phytoremediation.

SELECTION OF CITATIONS
SEARCH DETAIL