Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709346

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Fluorescent Dyes , Uranium , Uranium/analysis , Uranium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Humans , Limit of Detection , Biocompatible Materials/chemistry , HeLa Cells , Cell Survival/drug effects , Optical Imaging , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Pyridines/chemistry
2.
Sci Total Environ ; 858(Pt 2): 159796, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36374730

In consideration of the severe hazards of radioactive uranium pollution, the rapid assessment of uranium in field and in vivo are urgently needed. In this work a novel biocompatible and sensitive visual fluorescent sensor based on aggregation-induced emission (AIE) was designed for onsite detection of UO22+ in complex environmental samples, including wastewater from Uranium Plant, river water and living cell. The AIE-active sensor (named as TPA-SP) was prepared with a "bottom-up" strategy by introducing a trianiline group (TPA) with a single-bond rotatable helix structure into the salicylaldehyde Schiff-base molecule. The photophysical properties, cytotoxicity test, recognition mechanism and the analytical performance for the detection of UO22+ in actual water samples and cell imaging were systematically investigated. TPA-SP exhibited high sensitivity and selectivity toward UO22+ as well as outstanding anti-interference ability against large equivalent of different ions in a wide effective pH range. A good linear relationship in the UO22+ concentration range of 0.05-1 µM was obtained with a low limit of detection (LOD) of 39.4 nM (9.38 ppb) for uranium detection. The prepared visual sensor showed great potential for fast risk assessment of uranium pollution in environmental systems. In addition, our results also indicated that the TPA-SP exhibited very low cytotoxicity in cells and demonstrated great potential for uranium detection in vivo.


Uranium , Uranium/analysis , Water/chemistry , Limit of Detection , Ions/chemistry , Schiff Bases
3.
Bioresour Technol ; 337: 125390, 2021 Oct.
Article En | MEDLINE | ID: mdl-34126359

Sponge iron is a potential material for nitrogen and phosphate removal. To explore the performances and mechanisms of nitrogen and phosphate removal by sponge iron, a sponge iron biofilter was established. The results showed that nitrate was completely removed at HRT of 48 h without external carbon source and at HRT of 3 h with C/N ratio of 5. Furthermore, it was easy to achieve partial denitrification at HRT of 1 h with C/N ratio of 3. The mechanisms of nitrate removal were chemical reduction and nitrate dependent ferrous oxidation without external carbon source and heterotrophic denitrification with external carbon source. XPS result indicated that phosphate was removed by the formation of ferric phosphate precipitation. High throughput sequencing showed that iron-oxidizing bacteria Gallionellaceae was highly enriched in biofilter, accounting for 17.83%, which indicated that it was feasible to achieve autotrophic nitrate removal by sponge iron biofilter.


Denitrification , Nitrates , Autotrophic Processes , Bioreactors , Iron , Nitrogen , Phosphates
...