ABSTRACT
Abstract Purpose: To establish a method for the preparation of zoledronate liposome and to observe its effect on inducing the apoptosis of rat liver Kupffer cells. Methods: Zoledronate was encapsulated in liposomes, and then the entrapment rate was detected on a spectrophotometer. The prepared Zoledronate liposome (0.01 mg/mL) was injected into the tail vein of SD rats. Three days later, the number of Kupffer cells (CD68 positive) in rat liver tissue was detected by immunohistochemistry. Flow cytometry was used to detect the apoptosis rate of the isolated liver Kupffer cell cultured in vitro. Results: The entrapment rate of Zoledronate was 43.4±7.8%. Immunohistochemistry revealed that the number of Kupffer cells was 19.3±2.1 in PBS group and 5.5±1.7 in Zoledronate liposome group, with a significant difference (P<0.05). The apoptosis rate of Kupffer cells was 4.1±0.8% in PBS group, while it was 9±2.2% and 23.3±5.9% in Zoledronate liposomes groups with different concentrations of Zoledronate liposome (P<0.05). Conclusions: Zoledronate liposomes can effectively induce the apoptosis of Kupffer cells in vivo and in vitro, and the apoptosis rate is related to the concentration of Zoledronate liposome. To establish a rat liver Kupffer cell apoptosis model can provide a new means for further study on Kupffer cell function.
Subject(s)
Animals , Male , Apoptosis/drug effects , Zoledronic Acid/pharmacology , Kupffer Cells/drug effects , Liver/cytology , Immunohistochemistry , Random Allocation , Cell Count , Reproducibility of Results , Treatment Outcome , Rats, Sprague-Dawley , Drug Compounding/methods , Flow Cytometry , Zoledronic Acid/administration & dosage , Zoledronic Acid/chemical synthesis , Liposomes/chemical synthesisABSTRACT
Purpose:To establish a method for the preparation of zoledronate liposome and to observe its effect on inducing the apoptosis of rat liver Kupffer cells.Methods:Zoledronate was encapsulated in liposomes, and then the entrapment rate was detected on a spectrophotometer. The prepared Zoledronate liposome (0.01 mg/mL) was injected into the tail vein of SD rats. Three days later, the number of Kupffer cells (CD68 positive) in rat liver tissue was detected by immunohistochemistry. Flow cytometry was used to detect the apoptosis rate of the isolated liver Kupffer cell cultured in vitro.Results:The entrapment rate of Zoledronate was 43.4±7.8%. Immunohistochemistry revealed that the number of Kupffer cells was 19.3±2.1 in PBS group and 5.5±1.7 in Zoledronate liposome group, with a significant difference (P<0.05). The apoptosis rate of Kupffer cells was 4.1±0.8% in PBS group, while it was 9±2.2% and 23.3±5.9% in Zoledronate liposomes groups with different concentrations of Zoledronate liposome (P<0.05).Conclusions:Zoledronate liposomes can effectively induce the apoptosis of Kupffer cells in vivo and in vitro, and the apoptosis rate is related to the concentration of Zoledronate liposome. To establish a rat liver Kupffer cell apoptosis model can provide a new means for further study on Kupffer cell function.(AU)
Subject(s)
Animals , Rats , Liposomes , Apoptosis , Kupffer Cells , Liver/pathology , Diphosphonates/analysisABSTRACT
PURPOSE: To establish a method for the preparation of zoledronate liposome and to observe its effect on inducing the apoptosis of rat liver Kupffer cells. METHODS: Zoledronate was encapsulated in liposomes, and then the entrapment rate was detected on a spectrophotometer. The prepared Zoledronate liposome (0.01 mg/mL) was injected into the tail vein of SD rats. Three days later, the number of Kupffer cells (CD68 positive) in rat liver tissue was detected by immunohistochemistry. Flow cytometry was used to detect the apoptosis rate of the isolated liver Kupffer cell cultured in vitro. RESULTS: The entrapment rate of Zoledronate was 43.4±7.8%. Immunohistochemistry revealed that the number of Kupffer cells was 19.3±2.1 in PBS group and 5.5±1.7 in Zoledronate liposome group, with a significant difference (P<0.05). The apoptosis rate of Kupffer cells was 4.1±0.8% in PBS group, while it was 9±2.2% and 23.3±5.9% in Zoledronate liposomes groups with different concentrations of Zoledronate liposome (P<0.05). CONCLUSIONS: Zoledronate liposomes can effectively induce the apoptosis of Kupffer cells in vivo and in vitro, and the apoptosis rate is related to the concentration of Zoledronate liposome. To establish a rat liver Kupffer cell apoptosis model can provide a new means for further study on Kupffer cell function.
Subject(s)
Apoptosis/drug effects , Kupffer Cells/drug effects , Liver/cytology , Zoledronic Acid/pharmacology , Animals , Cell Count , Drug Compounding/methods , Flow Cytometry , Immunohistochemistry , Liposomes/chemical synthesis , Male , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Treatment Outcome , Zoledronic Acid/administration & dosage , Zoledronic Acid/chemical synthesisABSTRACT
Evidence is mounting that the prevalence of some putative endodontic pathogens can significantly vary according to the geographic location in which samples were taken. This study aimed to provide additional knowledge on this subject by comparing the frequencies of 10 selected candidate endodontic pathogens in samples of acute apical abscesses obtained from two distinct geographic locations; Portland, OR, and Rio de Janeiro, Brazil. DNA was extracted from aspirates and used as template in nested PCR assays using 16S rRNA gene taxon-specific oligonucleotide primers. Of the target species/phylotypes, Treponema denticola (73% of the cases), Porphyromonas endodontalis (70%), and Tannerella forsythia (57%) were the most prevalent taxa found in Brazilian samples. Dialister invisus (70% of the cases), P. endodontalis (63%) and Dialister pneumosintes (55%) were the most frequent taxa in the Portland, OR samples. Data analysis revealed that T. denticola and T. forsythia were significantly more detected in Brazilian samples than in the Portland, OR samples. Although D. invisus, Filifactor alocis, and Synergistes oral clone W090 were detected in many more samples from the Portland, OR patients, differences were not found to be statistically significant. These findings confirmed that some bacterial taxa can markedly differ in the frequencies they occur in samples from different locations. It remains to be clarified whether this observation translates into relevant therapeutic implications.