Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38850300

ABSTRACT

Our current study aimed to investigate the role and mechanism of circVIRMA in cervical cancer (CC) progression. CircVIRMA, microRNA-452-5p (miR-452-5p) and CREB3 regulatory factor (CREBRF) mRNA levels were examined in CC via quantitative real-time PCR (qRT-PCR). The protein level of CREBRF in CC was checked by Western blot. Cell Counting Kit-8 (CCK-8), colony formation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, cell cycle, flow cytometry and transwell assays were conducted to estimate the effects of circVIRMA on malignant phenotypes of CC tumors. Western blot was used to measure related marker protein levels. The interaction between miR-452-5p and circVIRMA or CREBRF was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Xenograft assay was used to assess the effect of circVIRMA on tumor growth in vivo. Immunohistochemistry (IHC) assay was performed to detect Ki-67 expression in tissues of mice. CircVIRMA and CREBRF levels were upregulated, while miR-452-5p was downregulated in CC tissues and cells. CircVIRMA silencing restrained CC cell proliferation, migration and invasion whereas induced apoptosis in vitro. In addition circVIRMA knockdown markedly attenuated xenograft tumor growth in vivo. circVIRMA was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. circVIRMA regulated CREBRF expression to modulate CC progression via miR-452-5p. MiR-452-5p downregulation reversed the effects of circVIRMA knockdown on CC progression. MiR-452-5p directly targeted CREBRF, and CREBRF overexpression partly restored the impact of miR-452-5p mimics on CC progression. circVIRMA mediated CC progression via regulating miR-452-5p/CREBRF axis, providing a novel therapeutic target for CC treatment.

2.
Front Oncol ; 12: 967386, 2022.
Article in English | MEDLINE | ID: mdl-35965520

ABSTRACT

Background: Cervical cancer (CC) is one of the common malignant tumors in women, Currently, 30% of patients with intermediate to advanced squamous cervical cancer are still uncontrolled or recurrent after standard radical simultaneous radiotherapy; therefore, the search for critical genes affecting the sensitivity of radiotherapy may lead to new strategies for treatment. Methods: Firstly, differentially expressed genes (DEGs) between radiotherapy-sensitivity and radiotherapy-resistance were identified by GEO2R from the gene expression omnibus (GEO) website, and prognosis-related genes for cervical cancer were obtained from the HPA database. Subsequently, the DAVID database analyzed gene ontology (GO). Meanwhile, the protein-protein interaction network was constructed by STRING; By online analysis of DEGs, prognostic genes, and CCDB data that are associated with cervical cancer formation through the OncoLnc database, we aim to search for the key DEGs associated with CC, Finally, the key gene(s) was further validated by immunohistochemistry. Result: 298 differentially expressed genes, 712 genes associated with prognosis, and 509 genes related to cervical cancer formation were found. The results of gene function analysis showed that DEGs were mainly significant in functional pathways such as variable shear and energy metabolism. By further verification, two genes, ASPH and NKAPP1 were identified through validation as genes that affect both sensitivities to radiotherapy and survival finally. Then, immunohistochemical results showed that the ASPH gene was highly expressed in the radiotherapy-resistant group and had lower Overall survival (OS) and Progression-free survival (PFS). Conclusion: This study aims to better understand the characteristics of cervical cancer radiation therapy resistance-related genes through bioinformatics and provide further research ideas for finding new mechanisms and potential therapeutic targets related to cervical cancer radiation therapy.

SELECTION OF CITATIONS
SEARCH DETAIL