Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Inflamm Res ; 73(7): 1173-1184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739197

ABSTRACT

OBJECTIVE AND DESIGN: To elucidate Sirt1's role in gouty arthritis inflammation and its potential mechanisms. MATERIAL: Constructed murine models of gouty arthritis and conducted THP-1 cell experiments. TREATMENT: 1 mg of MSU crystals injected into mice ankle joints for a 72-h intervention. After a 3-h pre-treatment with Sirt1-specific inhibitor (EX527) and agonist (SRT2104), inflammation was induced for 21 h using lipopolysaccharide (LPS) plus MSU crystals. METHODS: We assessed gouty arthritis severity through joint inflammation index, swelling, and hematoxylin and eosin (H&E) staining, and measured CD68 mononuclear macrophages and Sirt1 expression in synovial tissue via immunohistochemistry. ELISA, NO assay, RT-qPCR, Flow cytometry, and Western blot were utilized to examine macrophage inflammatory factors, polarization, reactive oxygen species(ROS), MAPK/NF-κB/AP-1 and Nrf2/HO-1 pathways proteins. RESULTS: Significant joint swelling, synovial tissue edema, and inflammatory cell infiltration were observed. CD68 mononuclear macrophages and Sirt1 expression were elevated in synovium. Sirt1 activation decreased inflammatory factors, M1 polarization, and ROS generation. Sirt1 activation reduced p38/JNK phosphorylation, thereby inhibiting downstream NF-κB p65/AP-1 and enhancing Nrf2/HO-1, thus suppressing inflammation. CONCLUSIONS: Sirt1 alleviates M1 macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic target for gouty arthritis.


Subject(s)
Arthritis, Gouty , Heme Oxygenase-1 , Macrophages , NF-E2-Related Factor 2 , NF-kappa B , Sirtuin 1 , Transcription Factor AP-1 , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , NF-E2-Related Factor 2/metabolism , Humans , Male , NF-kappa B/metabolism , Heme Oxygenase-1/metabolism , Mice , Transcription Factor AP-1/metabolism , THP-1 Cells , Mice, Inbred C57BL , Inflammation , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , Carbazoles , Membrane Proteins
2.
J Gastrointest Oncol ; 15(2): 730-746, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38756638

ABSTRACT

Background: Solute carrier family 16 member 1 (SLC16A1) serves as a biomarker in numerous types of cancer. Tumor immune infiltration has drawn increasing attention in cancer progression and treatment. The objective of our study was to explore the association between SLC16A1 and the tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC). Methods: Data were obtained from The Cancer Genome Atlas. The xCell web tool was used to calculate the proportion of immune cells according to SLC16A1 expression. To further explore the mechanism of SLC16A1, immunity-related genes were screened from differentially expressed genes through weighted gene coexpression network analysis, examined via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and filtrated using univariate Cox regression and least absolute shrinkage and selection operator regression model combined correlation analysis (P<0.05). Next, CIBERSORT was used to analyze the correlation between immune cells and five important genes. SLC16A1 expression and its clinical role in pancreatic cancer was clarified via immunohistochemical staining experiments. Finally, the effects of SLC16A1 on the results of cancer immunity were evaluated by in vitro experiments. Results: SLC16A1 was overexpressed in PDAC tissues and could be an independent prognostic factor. SLC16A1 was significantly negatively correlated with overall survival and suppressed the tumor immunity of PDAC. In clinic, SLC16A1 expression was significantly positively correlated with tumor progression and poor prognosis. We also found that SLC16A1 could suppress the antitumor ability of CD8+ T cells. Conclusions: SLC16A1 is a biomarker for the prognosis of PDAC and can influence the immune environment of PDAC. These findings provide new insights into the treatment of PDAC.

3.
Ultrason Sonochem ; 106: 106897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735250

ABSTRACT

Partial coalescence is a key factor contributing to the instability of crystalline oil-in-water emulsions in products like dressings and sauces, reducing shelf life. The intrinsic characteristics of semi-crystalline droplets, including solid fat content, fat crystal arrangement, and polymorphism, play a pivotal role in influencing partial coalescence, challenging prevention efforts even with emulsifiers like amphiphilic proteins. High-intensity ultrasound (HIU) has emerged as an efficient and cost-effective technology for manipulating bulk fat crystallization, thereby enhancing physical properties. This study specifically investigates the impact of HIU treatment on fat crystallization on protein-stabilized crystalline emulsions, utilizing palm olein stearin (POSt) as the lipid phase and sodium caseinate (NaCas) as the surfactant under various HIU powers (100, 150, 200, 300, and 400 W). Results show that increasing HIU power maintained the interfacial potential (-20 mV) provided by NaCas in the emulsions without significant differences. Higher HIU power induced the most stable polymorphic form (ß) in the emulsions. Engagingly, the emulsions at 200 W exhibited better storage stability and slower partial coalescence kinetics. Semi-crystalline globules had more uniform and integral crystal clusters that were distributed tangentially near the droplet boundary, perhaps attributed to intermediate subcooling (40.4 °C) at 200 W. The acoustic energy of HIU significantly translates into thermal effects, influencing subcooling degrees as a dominant factor affecting crystallisation in the emulsions. This study establishes ultrasonic crystallization as a novel strategy for modifying the stability of emulsions containing fat crystals.

4.
Anaerobe ; 82: 102768, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37541484

ABSTRACT

OBJECTIVE: Fusobacterium necrophorum causes bovine hepatic abscess, foot rot, mastitis, and endometritis. The 43 kDa outer membrane protein (43 K OMP) of F. necrophorum is a porin protein that plays an important role in infections by this bacterium, but the biological function and the pathogenesis of this protein are largely unknown. METHODS: In this study, we investigated the role of the 43 K OMP in bacterial infection of bovine mammary epithelial cells (MAC-T cells) by Tandem Mass Tag proteomic analysis. The RAW264.7 cells were incubated with recombinant 43 K OMP (12.5 µg/mL) for 2 h, 4 h, 6 h, and 12 h, and then the inflammatory related protein and inflammatory cytokine production were measured by Western blot analysis and ELISA, the mRNA expression levels of inflammatory cytokine were measured by Real-Time PCR. RESULTS: Proteomic analysis results demonstrated there were 224 differentially expressed proteins in the MAC-T cells stimulated with the 43 K OMP compared with control, and 118 proteins were upregulated and 106 proteins were downregulated. These differentially expressed proteins were mainly involved in NF-kappa B signaling, bacterial invasion of epithelial cells, cell adhesion, complement and coagulation cascades. The top six differentially expressed proteins were; MMP9, PLAU, STOM, PSMD13, PLAUR, and ITGAV, which were involved in a protein-protein interaction network. Furthermore, TLR/MyD88/NF-κB pathway related proteins and inflammatory cytokines (IL-6, TNF-α, and IL-1ß) were assessed by Western blot analysis and ELISA. Results showed the 43 K OMP to enhance the expression of TLR4 protein at 2 h (P < 0.01) and the MyD88 protein at 4 h (P < 0.05) post-stimulation, and to decrease IκBα expression at 4 h, 6 h and 12 h (P < 0.05) post-infection, as well as induce phosphorylation at Ser536 (P < 0.01). Levels of IL-6, IL-1ß, and TNF-α in the supernatants of mouse macrophages were increased (P < 0.05), as were mRNA expression levels of IL-6, IL-1ß, and TNF-α (P < 0.05), while IL-4 mRNA expression was decreased (P < 0.05). CONCLUSIONS: Taken together, these results suggested the important role for 43 K OMP in F. necrophorum infection, promoting the production of pro-inflammatory cytokines (IL-6 and TNF-α) by activation of the TLR/MyD88/NF-κB pathway. These findings provided a theoretical basis for a better understanding of the pathogenesis of F. necrophorum infection.


Subject(s)
Membrane Proteins , NF-kappa B , Mice , Animals , Cattle , NF-kappa B/metabolism , Membrane Proteins/metabolism , Fusobacterium necrophorum/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Myeloid Differentiation Factor 88/metabolism , Proteomics , Cytokines/metabolism , RNA, Messenger
5.
Transl Oncol ; 34: 101696, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37216755

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a leading cause of cancer death. Branched-chain amino acid (BCAA) homeostasis is important for normal physiological metabolism. Branched-chain keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme involved in BCAA degradation. BCAA metabolism has been highlighted in human cancers. The aberrant activation of mTORC1 has been implicated in tumor progression. Rab1A is a small GTPase, an activator of mTORC1, and an oncogene. This study aimed to reveal the specific role of BCKDK-BCAA-Rab1A-mTORC1 signaling in NSCLC. METHODS: We analyzed a cohort of 79 patients with NSCLC and 79 healthy controls. Plasma BCAA assays, immunohistochemistry, and network and pathway analyses were performed. The stable cell lines BCKDK-KD, BCKDK-OV A549, and H1299 were constructed. BCKDK, Rab1A, p-S6 and S6 were detected using western blotting to explore their molecular mechanisms of action in NSCLC. The effects of BCAA and BCKDK on the apoptosis and proliferation of H1299 cells were detected by cell function assays. RESULTS: We demonstrated that NSCLC was primarily involved in BCAA degradation. Therefore, combining BCAA, CEA, and Cyfra21-1 is clinically useful for treating NSCLC. We observed a significant increase in BCAA levels, downregulation of BCKDHA expression, and upregulation of BCKDK expression in NSCLC cells. BCKDK promotes proliferation and inhibits apoptosis in NSCLC cells, and we observed that BCKDK affected Rab1A and p-S6 in A549 and H1299 cells via BCAA modulation. Leucine affected Rab1A and p-S6 in A549 and H1299 cells and affected the apoptosis rate of H1299 cells. In conclusion, BCKDK enhances Rab1A-mTORC1 signaling and promotes tumor proliferation by suppressing BCAA catabolism in NSCLC, suggesting a new biomarker for the early diagnosis and identification of metabolism-based targeted approaches for patients with NSCLC.

6.
Pest Manag Sci ; 79(7): 2390-2396, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36802371

ABSTRACT

BACKGROUND: Plant domestication can alter plant and insect interactions and influence bottom-up and top-down effects. However, little is known about the effects of wild, local, and cultivated varieties of the same plant species in the same region on herbivores and their parasitoids. Here, six tobacco varieties were selected: wild Bishan and Badan tobaccos, local Liangqiao and Shuangguan sun-cured tobaccos, and cultivated Xiangyan 5 and Cunsanpi. We examined how wild, local, and cultivated tobacco types affect the tobacco cutworm herbivore Spodoptera litura and its parasitoid Meteorus pulchricornis. RESULTS: Levels of nicotine and trypsin protease inhibitor in leaves and the fitness of S. litura larvae varied significantly among the varieties. Wild tobacco had the highest levels of nicotine and trypsin protease inhibitor, which reduced the survival rate and prolonged the development period of S. litura. The tobacco types significantly influenced the life history parameters and host selection of M. pulchricornis. The cocoon weight, cocoon emergence rate, adult longevity, hind tibia length, and offspring fecundity of M. pulchricornis increased, whereas the development period decreased from wild to local to cultivated varieties. The parasitoids were more likely to select wild and local varieties than cultivated varieties. CONCLUSION: Domestication of tobacco resulted in reduced resistance to S. litura in cultivated tobacco. Wild tobacco varieties suppress S. litura populations, adversely affect M. pulchricornis, and may enhance bottom-up and top-down control of S. litura. © 2023 Society of Chemical Industry.


Subject(s)
Wasps , Animals , Spodoptera , Nicotiana , Nicotine , Trypsin , Host-Parasite Interactions , Larva , Protease Inhibitors
7.
Proteomics Clin Appl ; 17(3): e2200042, 2023 05.
Article in English | MEDLINE | ID: mdl-36443927

ABSTRACT

BACKGROUND: Lipidomics and metabolomics are closely related to tumor phenotypes, and serum lipoprotein subclasses and small-molecule metabolites are considered as promising biomarkers for breast cancer (BC) diagnosis. This study aimed to explore potential biomarker models based on lipidomic and metabolomic analysis that could distinguish BC from healthy controls (HCs) and triple-negative BC (TNBC) from non-TNBC. METHODS: Blood samples were collected from 114 patients with BC and 75 HCs. A total of 112 types of lipoprotein subclasses and 30 types of small-molecule metabolites in the serum were detected by 1 H-NMR. All lipoprotein subclasses and small-molecule metabolites were subjected to a three-step screening process in the order of significance (p < 0.05), univariate regression (p < 0.1), and lasso regression (nonzero coefficient). Discriminant models of BC versus HCs and TNBC versus non-TNBC were established using binary logistic regression. RESULTS: We developed a valid discriminant model based on three-biomarker panel (formic acid, TPA2, and L6TG) that could distinguish patients with BC from HCs. The area under the receiver operating characteristic curve (AUC) was 0.999 (95% confidence interval [CI]: 0.995-1.000) and 0.990 (95% CI: 0.959-1.000) in the training and validation sets, respectively. Based on the panel (D-dimer, CA15-3, CEA, L5CH, glutamine, and ornithine), a discriminant model was established to differentiate between TNBC and non-TNBC, with AUC of 0.892 (95% CI: 0.778-0.967) and 0.905 (95% CI: 0.754-0.987) in the training and validation sets, respectively. CONCLUSION: This study revealed lipidomic and metabolomic differences between BC versus HCs and TNBC versus non-TNBC. Two validated discriminatory models established against lipidomic and metabolomic differences can accurately distinguish BC from HCs and TNBC from non-TNBC. IMPACT: Two validated discriminatory models can be used for early BC screening and help BC patients avoid time-consuming, expensive, and dangerous BC screening.


Subject(s)
Lipidomics , Triple Negative Breast Neoplasms , Humans , Metabolomics , Triple Negative Breast Neoplasms/pathology , ROC Curve
8.
Biomolecules ; 12(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421714

ABSTRACT

Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression related to lipid metabolism in HCC and explored the clinical value of these genes. We screened differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography-Tandem Mass Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid metabolic processes. The potential clinical values of these genes were explored by bioinformatics online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of HBV-related HCC.


Subject(s)
Angiopoietin-like Proteins , Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , alpha-Fetoproteins/analysis , Angiopoietin-like Proteins/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Lipid Metabolism/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/virology , Hepatitis B/complications , Hepatitis B/diagnosis , Biomarkers, Tumor/genetics
9.
Front Cell Infect Microbiol ; 12: 827750, 2022.
Article in English | MEDLINE | ID: mdl-35774408

ABSTRACT

Fusobacterium necrophorum can cause liver abscess, foot rot in ruminants, and Lemire syndrome in humans, Also, its virulence factors can induce the apoptosis of macrophages and neutrophils. However, the detailed mechanism has not been fully clarified. This study investigated the mechanisms of apoptosis and inflammatory factor production in F. necrophorum-induced neutrophils and macrophages (RAW246.7). After infection of macrophages with F. necrophorum, 5-ethynyl-2'-deoxyuridine labeling assays indicated that F. necrophorum inhibited macrophage proliferation in a time- and dose-dependent manner. Hoechst staining and DNA ladder assays showed significant condensation of the nucleus and fragmentation of genomic DNA in F. necrophorum-infected macrophages, Annexin V (FITC) and propidium iodide (PI) assay confirmed the emergence of apoptosis in the macrophages and sheep neutrophils with F. necrophorum compared with the control. The group with significant apoptosis was subjected to RNA sequencing (RNA-Seq), and the sequencing results revealed 2581 up- and 2907 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed genes showed that F. necrophorum drove apoptosis and production of inflammatory factors by activating genes related to the Nuclear Factor-κB (NF-κB) and death receptor pathways. Meanwhile, quantitative reverse transcription PCR and Western blot validation results were consistent with the results of transcriptome sequencing analysis. In conclusion, F. necrophorum induced apoptosis and production of pro-inflammatory factors through the NF-κB and death receptor signaling pathway, providing a theoretical basis for further mechanistic studies on the prevention and control of F. necrophorum disease treatment.


Subject(s)
Fusobacterium Infections , Fusobacterium necrophorum , Animals , Apoptosis , Cytokines , Fusobacterium Infections/microbiology , Fusobacterium Infections/veterinary , Fusobacterium necrophorum/genetics , NF-kappa B , Receptors, Death Domain , Sheep , Signal Transduction
10.
Vet Microbiol ; 266: 109335, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121302

ABSTRACT

Fusobacterium necrophorum, a Gram-negative anaerobe, is an important bovine pathogen that causes hepatic abscesses, foot rot, mastitis and endometritis. We have previously shown that the 43 kDa outer membrane protein (43 K OMP) of F. necrophorum is a porin protein that plays an important role in bacterial infections; however, the molecular mechanisms by which this protein mediates adhesion remain unclear. In this study, we investigated the role of 43 K OMP in F. necrophorum adhesion to bovine epithelial cells using 43 K OMP-deficient mutants, and identified the protein that interacts with 43 K OMP by immunoprecipitation-mass spectrometry. Our results indicated that the native 43 K OMP and recombinant 43 K OMP could bind to the cell membrane of MAC-T or bovine endometrial epithelial cells (BEECs). When F. necrophorum was preincubated with antibodies against the recombinant 43 K OMP or bovine epithelial cells were preincubated with 43 K OMP, the adhesion of F. necrophorum to MAC-T or BEECs decreased significantly (P<0.01). We successfully constructed a 43 K OMP-deficient strain (A25Δ43 K OMP) and bacterial attachment to MAC-T or BEECs was significantly higher with the F. necrophorum A25 strain than with mutant strain A25Δ43 K OMP (P<0.01). The deficiency of 43 K OMP reduced the binding of F. necrophorum to bovine epithelial cells by 90.5 %-94.9 %. Among the 39 potential differential proteins, fibronectin, collagen and myosin were selected as the target proteins, and direct interaction between 43 K OMP of F. necrophorum and fibronectin was demonstrated. Taken together, these results suggest that 43 K OMP plays a key role in adhesion of F. necrophorum to bovine epithelial cells through its interaction with fibronectin. These findings provide a theoretical basis for the pathogenic mechanism of F. necrophorum.


Subject(s)
Cattle Diseases , Foot Rot , Fusobacterium Infections , Animals , Cattle , Cattle Diseases/microbiology , Epithelial Cells , Female , Fibronectins/metabolism , Foot Rot/microbiology , Fusobacterium Infections/microbiology , Fusobacterium Infections/veterinary , Fusobacterium necrophorum/genetics
11.
PhytoKeys ; 195: 93-106, 2022.
Article in English | MEDLINE | ID: mdl-36761356

ABSTRACT

Asterquanzhouensis sp. nov. (Asteraceae) from Fujian, eastern China, is described and illustrated. It grows on rocks in the riparian zone. Morphological, cytological and molecular investigations of A.quanzhouensis were carried out. The morphological data and phylogenetic analysis based on combined ITS, ETS and trnL-F dataset suggest that A.quanzhouensis is a separate species closely related to A.tonglingensis. The new species differs from the latter by the shorter stem length, leaf morphology, colour of phyllaries, number of ray florets, and achene shape. The cytological observation shows that the new species is diploid with a karyotype of 2n = 18.

12.
Front Vet Sci ; 8: 780377, 2021.
Article in English | MEDLINE | ID: mdl-34938794

ABSTRACT

We evaluated the efficacy of three vaccine formulations containing different combinations of proteins (43K OMP, leukotoxin recombinant protein PL4 and hemolysin recombinant protein H2) and killed whole cell Fusobacterium necrophorum in preventing liver abscess. Four subcutaneous vaccines were formulated: vaccine 1 (43K OMP), vaccine 2 (PL4 and H2), vaccine 3 (43K OMP, PL4 and H2), and vaccine 4 (killed whole bacterial cell). 43K OMP, PL4, and H2 proteins were produced by using recombinant protein expression. To evaluate vaccine efficacy, we randomly allocated 50 BALB/c female mice to one of five different treatment groups: PBS control group, vaccine 1, vaccine 2, vaccine 3, and vaccine 4. Mice were vaccinated three times, with 14 days between each immunization. After immunization, the mice were challenged with F. necrophorum. The three key findings of this study are as follows: (1) Vaccine 3 has enabled mice to produce higher antibody titer following bacterial challenge, (2) in the liver pathology of mice, the vaccine 3 liver showed the least pathology, and (3) all four vaccines produced high levels of antibodies and cytokines in mice, but the level of vaccine 3 was the highest. Based on our results, it has been demonstrated that a mixture of F. necrophorum 43K OMP, PL4, and H2 proteins inoculated with mice can achieve protection against liver abscess in mice. Our research may therefore provide the basis for the development of a vaccine against F. necrophorum bovine infections.

13.
J Pers Med ; 11(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34834495

ABSTRACT

Early diagnosis is essential for improving the prognosis and survival of patients with hepatocellular carcinoma (HCC). This study aims to explore the clinical value of lipoprotein subfractions in the diagnosis of hepatitis B virus (HBV)-related HCC. Lipoprotein subfractions were detected by 1H-NMR spectroscopy, and the pattern-recognition method and binary logistic regression were performed to classify distinct serum profiles and construct prediction models for HCC diagnosis. Differentially expressed proteins associated with lipid metabolism were detected by LC-MS/MS, and the potential prognostic significance of the mRNA expression was evaluated by Kaplan-Meier survival analysis. The diagnostic panel constructed from the serum particle number of very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL-1~LDL-6) achieved higher accuracy for the diagnosis of HBV-related HCC and HBV-related benign liver disease (LD) than that constructed from serum alpha-fetoprotein (AFP) alone in the training set (AUC: 0.850 vs. AUC: 0.831) and validation set (AUC: 0.926 vs. AUC: 0.833). Furthermore, the panel achieved good diagnostic performance in distinguishing AFP-negative HCC from AFP-negative LD (AUC: 0.773). We also found that lipoprotein lipase (LPL) transcript levels showed a significant increase in cancerous tissue and that high expression was significantly positively correlated with the poor prognosis of patients. Our research provides new insight for the development of diagnostic biomarkers for HCC, and abnormal lipid metabolism and LPL-mediated abnormal serum lipoprotein metabolism may be important factors in promoting HCC development.

14.
Front Oncol ; 11: 652206, 2021.
Article in English | MEDLINE | ID: mdl-34123804

ABSTRACT

PURPOSE: Long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of bladder cancer, but the underlying molecular mechanisms remain largely unknown. In this study, we found that LINC00467 was significantly highly expressed in bladder cancer through bioinformatic analysis. The present study aimed to explore the role of LINC00467 in bladder cancer and its possible underlying molecular mechanisms. METHODS: The expression of LINC00467 was obtained from GEO (GSE31189), the TCGA database, and qRT-PCR. The role of LINC00467 in bladder cancer was assessed both in vitro and in vivo. RIP, RNA pulldown, and CO-IP were used to demonstrate the potential mechanism by which LINC00467 regulates the progression of bladder cancer. RESULTS: Through the analysis of GEO (GSE133624) and the TCGA database, it was found that LINC00467 was highly expressed in bladder cancer tissues and that the expression of LINC00467 was significantly negatively correlated with patient prognosis. Cell and animal experiments suggest that LINC00467 promotes the proliferation and invasion of bladder cancer cells. On the one hand, LINC00467 can directly bind to NF-kb-p65 mRNA to stabilize its expression. On the other hand, LINC00467 can directly bind to NF-kb-p65 to promote its translocation into the nucleus to activate the NF-κB signaling pathway, which promotes the progression of bladder cancer. CONCLUSIONS: LINC00467 is highly expressed in bladder cancer and can promote the progression of bladder cancer by regulating the NF-κB signaling pathway. Therefore, targeting LINC00467 is very likely to provide a new strategy for the treatment of bladder cancer and for improving patient prognosis.

15.
Ann Transl Med ; 9(5): 417, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33842638

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy: it has a 5-year survival rate of less than 9%. Although surgical resection is an effective treatment for PDAC, only a small number of patients can have their tumors surgically removed. Thus, an urgent need to find new therapeutic targets for PDAC exists. Understanding the molecular mechanism of PDAC development is essential for the treatment of this malignancy. This research aimed to study the mechanisms of pancreatic stellate cells (PSCs), which regulate branched-chain amino acid (BCAA) metabolism in PDAC. METHODS: Differentially expressed proteins were detected via nanoliquid chromatography coupled to mass spectrometry (nano-LC-MS/MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment methods were used to find the valine-leucine-isoleucine (BCAA) degradation pathway. The levels of BCAAs in the sera and tissues of patients with PDAC were measured by using nuclear magnetic resonance (NMR). The functions of BCAA concentrations and the effects of activated pancreatic stellate cells (aPSCs) were also evaluated by performing Cell Counting Kit-8, colony formation, and wound healing assays. RESULTS: A total of 1,519 proteins with significantly differential expression were discovered in PDAC and adjacent tissues by using nano-LC-MS/MS. KEGG pathway enrichment analysis identified the BCAA degradation pathway. The content of BCAA in PDAC clinical samples was up-regulated. However, the addition of different concentrations of BCAA to PDAC cell culture medium failed to promote the proliferation and migration of PDAC cells. Given that analysis based on The Cancer Genome Atlas database showed that the number of aPSCs gradually increased with the progression of PDAC, the effects of aPSCs on PDAC cells were explored. After coculture with aPSCs, PDAC cell proliferation showed a significant increase, and the proteins involved in the BCAA degradation pathway in PDAC cells had also changed. CONCLUSIONS: aPSCs could regulate BCAA metabolism to enhance the progression of PDAC, indicating that the regulation of BCAA metabolism may serve as a new therapeutic direction for PDAC.

16.
Ann Transl Med ; 9(4): 358, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33708985

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) has the lowest 5-year survival rate; therefore, new early screening methods and therapeutic targets are still urgently required. Emerging technologies such as metabolomic-based liquid biopsy may contribute to the field. We found aberrant lactate dehydrogenase A (LDHA) signaling to be an unfavorable biomarker for PC. METHODS: A total of 9 genes of the glycolysis pathway were detected by enrichment analysis in the PC Gene Expression Omnibus (GEO) dataset. The relationship between LDHA/pyruvate kinase (PKM)/fructose biphosphate aldolase A (ALDOA)/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and patient survival was analyzed by Kaplan-Meier plotting analysis of The Cancer Genome Atlas (TCGA). The detection of changing metabolites in the serum of PC patients was performed using a nuclear magnetic resonance (NMR) spectrometer. RESULTS: We found LDHA was an independent predictor of overall survival (OS) in PC patients (P<0.001). Consistent with genetic aberrance of LDHA, we identified significant alterations in patients' glycolysis-related metabolites, including upregulation of lactic acid and downregulation of pyruvic acid. A 0.956 area under the curve (AUC) was achieved using the combinative metabolites score of lactic acid, pyruvic acid, citric acid, and glucose to distinguish PC from healthy controls. CONCLUSIONS: Aberrant LDHA signaling is an unfavorable biomarker for PC and consequential metabolic changes constitute potential diagnostic signatures of PCs.

17.
Transl Lung Cancer Res ; 10(12): 4459-4476, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35070754

ABSTRACT

BACKGROUND: Metabolic reprogramming is a major feature of many tumors including non-small cell lung cancer (NSCLC). Branched-chain α-keto acid dehydrogenase kinase (BCKDK) plays an important role in diabetes, obesity, and other diseases. However, the function of BCKDK in NSCLC is unclear. This study aimed to explore the function of BCKDK in NSCLC. METHODS: Metabolites in the serum of patients with NSCLC and the supernatant of NSCLC cell cultures were detected using nuclear magnetic resonance (NMR) spectroscopy. Colony formation, cell proliferation, and cell apoptosis were assessed to investigate the function of BCKDK in the progression of NSCLC. Glucose uptake, lactate production, cellular oxygen consumption rate, extracellular acidification rate, and reactive oxygen species (ROS) were measured to examine the function of BCKDK in glucose metabolism. The expression of BCKDK was measured using reverse transcriptase-polymerase chain reaction, western blot, and immunohistochemical assay. RESULTS: Compared with healthy controls and postoperative NSCLC patients, increased branched-chain amino acid (BCAA) and decreased citrate were identified in the serum of preoperative NSCLC patients. Upregulation of BCKDK affected the metabolism of BCAAs and citrate in NSCLC cells. Knockout of BCKDK decreased the proliferation and exacerbated apoptosis of NSCLC cells ex vivo, while increased oxidative phosphorylation and, ROS levels, and inhibited glycolysis. CONCLUSIONS: BCKDK may influence glycolysis and oxidative phosphorylation by regulating the degradation of BCAA and citrate, thereby affecting the progression of NSCLC.

18.
Anaerobe ; 63: 102184, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32247918

ABSTRACT

Fusobacterium necrophorum is a Gram negative, spore-free, anaerobic bacterium that can cause pyogenic and necrotic infections in animals and humans. It is a major bovine pathogen and causes hepatic abscesses, foot rot, and necrotic laryngitis. The 43K OMP of F. necrophorum is an outer membrane protein with molecular weight of 43 kDa, exhibiting similarity to pore-forming proteins of other Fusobacterium species that plays an important role in bacterial infections. However, the role of 43K OMP in F. necrophorum adhesion remains unknown. In this study, we evaluated whether the 43K OMP of F. necrophorum mediates adhesion to BHK-21 cells and performed a preliminary screen of the proteins that interact with 43K OMP of F. necrophorum by immunoprecipitation-mass spectrometry. The results showed that the natural 43K OMP and recombinant 43K OMP could bind to BHK-21 cells, and preincubation of F. necrophorum with an antibody against the recombinant 43K OMP of F. necrophorum decreased binding to BHK-21 cells. Seventy differential interacting proteins were successfully screened by immunoprecipitation-mass spectrometry. Among these seventy differential interacting proteins, seven cell membrane proteins and four extracellular matrix proteins shown to be relevant to bacteria adhesion through subcellular localization and single-molecule function analysis. These data increase our understanding of the pathogenesis of F. necrophorum and provide a new theoretical basis for the design of antimicrobial drugs against F. necrophorum.


Subject(s)
Bacterial Adhesion , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins , Fusobacterium necrophorum/metabolism , Animals , Antibodies, Neutralizing , Carrier Proteins/chemistry , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cattle , Cell Line , Fusobacterium Infections/metabolism , Humans , Immunoprecipitation , Mass Spectrometry , Recombinant Proteins/metabolism
19.
Front Psychiatry ; 11: 141, 2020.
Article in English | MEDLINE | ID: mdl-32256396

ABSTRACT

Current evidence supports the idea that neural plasticity is a potential cause of depression. Abundant studies indicate that CRMP2 has important roles in neural plasticity. Moreover, CRMP2 may contribute to the etiology of depression. However, the regulatory mechanisms underlying the role of CRMP2 remain unclear. DNA methylation alteration is generally acknowledged to be involved in the development of depression. The aim of this study was to explore the relationship between the expression and DNA methylation of CRMP2 in the hippocampus and prefrontal cortex of a rat depression model. Chronic unpredictable mild stress (CUMS) was used to establish a rat depression model, and body weight and behavioral tests were used to evaluate the effects of stress. Real-time PCR and Western blotting were used to test CRMP2 mRNA and protein expression, respectively, in the hippocampus and prefrontal cortex of rats. DNA methylation levels of the CRMP2 promoter were analyzed by bisulfite sequencing PCR (BSP). CUMS caused depressive-like behavior in rats, as evidenced by: decreased body weight and sucrose preference rate; decreases in the total distance traveled, rearing frequency, velocity, and duration in the center in the open field test (OFT); and prolonged immobility in the forced swimming test (FST). CRMP2 mRNA and protein expression in the hippocampus and prefrontal cortex were significantly decreased in the CUMS group compared with the control group. The levels of CRMP2 promoter DNA methylation in the hippocampus of the CUMS group were significantly higher than those of the control group, while these changes were not observed in the prefrontal cortex of CUMS rats. Our data provide evidence that altered expression of CRMP2 in the hippocampus and prefrontal cortex is associated with the pathogenesis of depression. Moreover, the results also suggest regional differences in the regulation of DNA methylation in the CRMP2 promoter between the hippocampus and prefrontal cortex during the development of depression.

20.
Biol Trace Elem Res ; 197(1): 254-261, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31916180

ABSTRACT

Manganese (Mn) pollution is an important environmental problem because of the potential toxicity to human and animal health. However, the effects of Mn on energy metabolism and autophagy are not clear. Consequently, we examined the effects of excessive and chronic exposure to Mn on liver function, oxidative stress, respiratory chain complex activity, and autophagy in chicken liver. Our results indicated that the accumulation of Mn in the liver and levels of AST and ALT in the serum of the Mn-exposed group were significantly higher (P < 0.05) than those in the control group at 90 days; the activities of GSH-Px, SOD, CAT, Na+-K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and respiratory chain complexes (I, II, III) in the Mn-exposed group were significantly decreased (P < 0.05) compared to the control group. However, the MDA content, NO content, iNOS activity, mRNA and protein levels of iNOS, and autophagy-related genes in the Mn-exposed group were significantly increased (P < 0.05) compared to the control group. In contrast, the mRNA level and protein expression of mTOR were significantly decreased (P < 0.05) compared to the control group. Furthermore, the characteristic autophagic vacuolar organelles were observed in the Mn-exposed group. These results suggested that excess Mn exposure can cause a disorder of energy metabolism by mitochondrial injury and induce oxidative stress and autophagy, which eventually lead to liver damage.


Subject(s)
Chickens , Oxidative Stress , Animals , Autophagy , Chlorides , Energy Metabolism , Liver , Manganese Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...