Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.728
1.
Food Res Int ; 188: 114352, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823826

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Digestion , Microgels , Taste , Whey Proteins , Whey Proteins/chemistry , Humans , Microgels/chemistry , Food Handling/methods , Gastrointestinal Tract/metabolism , Sensation
2.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 May 31.
Article En | MEDLINE | ID: mdl-38825269

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.

3.
Sci Rep ; 14(1): 12930, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839774

In the clinical application of intravascular optical coherence tomography (IVOCT), it is necessary to flush opaque blood during image acquisition. However, there are no specific standards for how to perform low-dose but effective flushing. In this study, computational fluid dynamics (CFD) and optical models were integrated to numerically simulate the complete process of IVOCT, which includes blood flushing with normal saline followed by image acquisition. Moreover, an intermittent injection scheme was proposed, and its advantages over the conventionally adopted scheme of continuous injection were verified. The results show that intermittent injection can significantly reduce the dosage of normal saline (reduced by 44.4%) with only a slight sacrifice of image quality (reduced by 8.7%, but still acceptable). The developed model and key findings in this work can help surgeons practice optimized IVOCT operations and potentially lead to improved designs of the IVOCT equipment.


Computer Simulation , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Hydrodynamics
4.
Crit Rev Food Sci Nutr ; : 1-17, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693696

Lipid-based delivery systems (LDS) have emerged as cornerstone techniques for bolstering the bioavailability of lipophilic bioactive compounds, addressing challenges related to solubility, stability, and absorption. This critical review examined a substantial dataset of 6,907 scientific articles and 3,021 patents from 2001-2023, elucidating the multifaceted evolution of LDS, with a particular focus on its industrial and patent-driven perspective. Notably, there were pronounced surges in functional food patent applications in 2004, 2011, and 2019. The trajectory revealed a shift from foundational nanoemulsions to more complex structures, such as double/multiple emulsions, solid lipid nanoparticles, Pickering emulsions, and bigels. The review further identified the top 10 leading institutions shaping this domain. Technologies like spray-drying, microfluidics, and phase gelation had revolutionized the landscape, resulting in refined sensory experiences, innovative reduced-fat formulations, enriched beverages, tailor-made infant nutrition, and nuanced release mechanisms for flavors. The review also spotlighted current research frontiers, notably Pickering emulsions, bigels, and multiple emulsions. These emerging technologies not only exemplified the ongoing innovation in the field but also underscored their potential in reshaping the future landscape of value-added functional foods.

5.
Medicine (Baltimore) ; 103(18): e38054, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701253

BACKGROUND: Neuropathic pain (NP) is a common type of pain in clinic. Due to the limited effect of drug treatment, many patients with NP are still troubled by this disease. In recent years, complementary and alternative therapy (CAT) has shown good efficacy in the treatment of NP. As the interest in CAT for NP continues to grow, we conducted a bibliometric study of publications on CAT treatment for NP. The aim of this study is to analyze the development overview, research hotspots and future trends in the field of CAT and NP through bibliometric methodology, so as to provide a reference for subsequent researchers. METHODS: Publications on CAT in the treatment of NP from 2002 to 2022 were retrieved from the Web of Science Core Collection. Relevant countries, institutions, authors, journals, keywords, and references were analyzed bibliometrically using Microsoft Excel 2021, bibliometric platform, VOSviewer, and CiteSpace. RESULTS: A total of 898 articles from 46 countries were published in 324 journals, and they were contributed by 4455 authors from 1102 institutions. The most influential country and institution are China (n = 445) and Kyung Hee University (n = 63), respectively. Fang JQ (n = 27) and Evidence-Based Complementary and Alternative Medicine (n = 63) are the author and journal with the most publications in this field. The clinical efficacy, molecular biological mechanisms and safety of CAT for NP are currently hot directions. Low back pain, postherpetic neuralgia, acupuncture, and herbal are the hot topics in CAT and NP in recent years. CONCLUSION: This study reveals the current status and hotspots of CAT for NP. The study also indicates that the effectiveness and effect mechanism of acupuncture or herbs for treating emotional problems caused by low back pain or postherpetic neuralgia may be a trend for future research.


Bibliometrics , Complementary Therapies , Neuralgia , Complementary Therapies/statistics & numerical data , Complementary Therapies/methods , Complementary Therapies/trends , Humans , Neuralgia/therapy
6.
Nat Med ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38740994

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

7.
ACS Pharmacol Transl Sci ; 7(5): 1197-1204, 2024 May 10.
Article En | MEDLINE | ID: mdl-38751622

The greatest repository of microbes in the human body, the intestinal microbiome, is involved in neurological development, aging, and brain illnesses such as white matter injury (WMI) in preterm newborns. Intestinal microorganisms constitute a microbial gut-brain axis that serves as a crucial conduit for communication between the gut and the nervous system. This axis controls inflammatory cytokines, which in turn influence the differentiation of premyelinating oligodendrocytes (pre-OLs) and influence the incidence of WMI in premature newborns through the metabolites generated by gut microbes. Here, we describe the effects of white matter injury (WMI) on intestinal dysbiosis and gut dysfunction and explain the most recent research findings on the gut-brain axis in both humans and animals. We also emphasize the delicate relationship that exists between the microbiota and the brain following acute brain injury. The role that the intestinal microflora plays in influencing host metabolism, the immune system, brain health, and the course of disease is becoming increasingly clear, but there are still gaps in the field of WMI treatment. Thus, this review demonstrates the function of the gut microflora-brain axis in WMI and elucidates the possible mechanisms underlying the communication between gut bacteria and the developing brain via the gut-brain axis, potentially opening up new avenues for microbial-based intervention and treatment for preterm WMI.

8.
Front Pharmacol ; 15: 1375779, 2024.
Article En | MEDLINE | ID: mdl-38751784

To expand the application of nobiletin (NOB) in semi-solid functional foods, bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing index and bioavailability of the NOB-loaded Pickering emulsion was evaluated. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to the oil-water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-thinning behavior. Fork drip test results suggested that the textural value of unloaded and NOB-loaded emulsions was International Dysphagia Diet Standardisation Initiative Level 4, which could be swallowed directly without chewing. The in vitro lipolysis model suggested that NOB had a faster digestive profile and a higher bioaccessibility in the BCPE than in the oil suspension. The in vivo rat model revealed that the oral bioavailability of NOB was increased by 2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover, BCPE led to a higher plasma concentration of the major demethylated metabolite of NOB (4'-demethylnobiletin) than the unformulated oil. Accordingly, BCPE enhanced the oral bioavailability of NOB by improving bioaccessibility, absorption, and biotransformation.

9.
Chem Sci ; 15(19): 7285-7292, 2024 May 15.
Article En | MEDLINE | ID: mdl-38756801

Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.

10.
PLoS One ; 19(5): e0302414, 2024.
Article En | MEDLINE | ID: mdl-38748743

PURPOSE: Investigating the association between red cell distribution width (RDW) and all-cause mortality in patients with breast cancer, to evaluate the potential clinical prognostic value of RDW. METHODS: Based on the RDW index, patients with breast cancer in the Medical Information Mart for Intensive Care (MIMIC-IV) database were categorized into quartiles. The primary outcomes included in-hospital mortality from all causes during the first six months, the first year, and the first three years. Cox hazards regression and restricted cubic spline (RCS) models were developed to investigate the effects of RDW on primary outcomes. RESULTS: The study included 939 patients (female). The 6-month, 1-year, and 3-year mortality rates were 14.0%, 21.4%, and 28.4%, respectively. Multivariate Cox proportional hazards analyses demonstrated that RDW exhibited an autonomous association with an increased risk of all-cause mortality. After adjusting for confounders, higher RDW quartiles were significantly associated with 6-month mortality (adjusted hazard ratio (HR), 3.197; 95% confidence interval (CI), 1.745-5.762; P < 0.001), 1-year mortality (adjusted HR, 2.978; 95% CI, 1.867-4.748; P < 0.001), and 3-year mortality (adjusted HR, 2.526; 95% CI, 1.701-3.750; P < 0.001). The RCS curves demonstrated that high RDW (> 14.6) was associated with a greater risk of all-cause mortality. Subgroup analyses revealed no statistically significant differences in the interactions between the subgroups. CONCLUSION: The study revealed a highly pronounced relationship between RDW and overall mortality, indicating its potential as an autonomous prognostic factor for increased mortality among patients with breast cancer.


Breast Neoplasms , Erythrocyte Indices , Humans , Female , Breast Neoplasms/mortality , Breast Neoplasms/blood , Middle Aged , Retrospective Studies , Prognosis , Aged , Proportional Hazards Models , Adult , Hospital Mortality , Risk Factors
11.
BioData Min ; 17(1): 13, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773619

A knowledge graph can effectively showcase the essential characteristics of data and is increasingly emerging as a significant means of integrating information in the field of artificial intelligence. Coronary artery plaque represents a significant etiology of cardiovascular events, posing a diagnostic challenge for clinicians who are confronted with a multitude of nonspecific symptoms. To visualize the hierarchical relationship network graph of the molecular mechanisms underlying plaque properties and symptom phenotypes, patient symptomatology was extracted from electronic health record data from real-world clinical settings. Phenotypic networks were constructed utilizing clinical data and protein‒protein interaction networks. Machine learning techniques, including convolutional neural networks, Dijkstra's algorithm, and gene ontology semantic similarity, were employed to quantify clinical and biological features within the network. The resulting features were then utilized to train a K-nearest neighbor model, yielding 23 symptoms, 41 association rules, and 61 hub genes across the three types of plaques studied, achieving an area under the curve of 92.5%. Weighted correlation network analysis and pathway enrichment were subsequently utilized to identify lipid status-related genes and inflammation-associated pathways that could help explain the differences in plaque properties. To confirm the validity of the network graph model, we conducted coexpression analysis of the hub genes to evaluate their potential diagnostic value. Additionally, we investigated immune cell infiltration, examined the correlations between hub genes and immune cells, and validated the reliability of the identified biological pathways. By integrating clinical data and molecular network information, this biomedical knowledge graph model effectively elucidated the potential molecular mechanisms that collude symptoms, diseases, and molecules.

13.
Article En | MEDLINE | ID: mdl-38780894

BACKGROUND: Although physician-pharmacist collaborative clinics for diabetes management have been shown to be effective and cost-effective worldwide, there is limited understanding of the factors that influence their sustainable implementation. This study aims to identify the associated factors and provide sustainability strategy to better implement physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers in China. METHODS: A sample of 43 participants were participated in face-to-face, in-depth, semi-structured interviews. Consolidated Framework for Implementation Research was used to identify facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers, and to explore discriminating factors between low and high implementation units. A sustainable strategy repository based on dynamic sustainability framework was established to inform further implementation. RESULTS: This study demonstrated that clear recognition of intervention benefits, urgent needs of patients, adaptive and tailored plan, highly collaborative teamwork and leadership support were the major facilitators, while the major barriers included process complexity, large number and poor health literacy of patients in primary areas, inappropriate staffing arrangements, weak financial incentives and inadequate staff competencies. Six constructs were identified to distinguish between high and low implementation units. Sixteen strategies were developed to foster the implementation of physician-pharmacist collaborative clinics, targeting Intervention, Practice setting, and Ecological system. CONCLUSION: This qualitative study demonstrated facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers and developed theory-based strategies for further promotion, which has the potential to improve the management of diabetes and other chronic diseases in under-resourced areas.

14.
Article En | MEDLINE | ID: mdl-38814831

AIMS: Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffered ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. RESULTS: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species while decreases in the activities of anti-oxidative enzymes, concomitant with a down-regulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1, and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), and subsequently disrupted the assembly of CARD11, B-cell lymphoma 10 (BCL10) and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. INNOVATION AND CONCLUSION: The E3 ubiquitin ligase function of MALT1 accounts for the down-regulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and subsequent activation of MALT1.

15.
Pain Ther ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809395

Chronic pain after lung transplantation (LTx) can substantially reduce quality of life (QoL), yet current consensus guidelines say little about how to prevent or manage it. Research on pain after LTx has tended to focus on acute rather than chronic pain, and it has not extensively examined the factors associated with onset or resolution of chronic pain, which differ from factors influencing chronic pain after general thoracic surgery. This narrative review explores what is known about the epidemiology and risk factors of chronic pain after LTx, as well as effective ways to treat or prevent it. The review identifies key questions and issues that should be the focus of future research.

16.
Adv Mater ; : e2402625, 2024 May 15.
Article En | MEDLINE | ID: mdl-38746999

The energy storage density of Li-ion batteries can be improved by replacing graphite anodes with high-capacity Si-based materials, though instabilities have limited their implementation. Performance degradation mechanisms that occur in Si anodes can be divided into cycling stability (capacity retention after repeated battery cycles) and calendar aging (shelf life). While cycling instabilities and improvement strategies have been researched intensively, there is little known about the underlying mechanisms that cause calendar aging. In this work, multiple electron microscope techniques are used to explore the mechanism that governs calendar aging from the sub-nanometer-to-electrode scale. Plasma focused ion beam tomography is used to create 3D reconstructions of calendar aged electrodes and revealed the growth of a LiF-rich layer at the interface between the copper current collector and the silicon material, which can lead to delamination and increased interfacial impendence. The LiF layer appeared to derive from the fluoro-ethylene-carbonate electrolyte additive, which is commonly used to improve cycling stability in Si-based systems. The results reveal that additives necessary to improve cycling stability can cause performance degradation over the long-term during calendar aging. The results show that high performing, stable systems require careful design to simultaneously mitigate both cycling and calendar aging instabilities.

17.
World J Gastrointest Surg ; 16(5): 1291-1300, 2024 May 27.
Article En | MEDLINE | ID: mdl-38817277

BACKGROUND: The prognostic nutritional index (PNI), a marker of immune-nutrition balance, has predictive value for the survival and prognosis of patients with various cancers. AIM: To explore the clinical significance of the preoperative PNI on the prognosis of ampullary adenocarcinoma (AC) patients who underwent curative pancreaticoduodenectomy. METHODS: The data concerning 233 patients diagnosed with ACs were extracted and analyzed at our institution from January 1998 to December 2020. All patients were categorized into low and high PNI groups based on the cutoff value determined by receiver operating characteristic curve analysis. We compared disease-free survival (DFS) and overall survival (OS) between these groups and assessed prognostic factors through univariate and multivariate analyses. RESULTS: The optimal cutoff value for the PNI was established at 45.3. Patients with a PNI ≥ 45.3 were categorized into the PNI-high group, while those with a PNI < 45.3 were assigned to the PNI-low group. Patients within the PNI-low group tended to be of advanced age and exhibited higher levels of aspartate transaminase and total bilirubin and a lower creatinine level than were those in the PNI-high group. The 5-year OS rates for patients with a PNI ≥ 45.3 and a PNI < 45.3 were 61.8% and 43.4%, respectively, while the 5-year DFS rates were 53.5% and 38.3%, respectively. Patients in the PNI- low group had shorter OS (P = 0.006) and DFS (P = 0.012). In addition, multivariate analysis revealed that the PNI, pathological T stage and pathological N stage were found to be independent prognostic factors for both OS and DFS. CONCLUSION: The PNI is a straightforward and valuable marker for predicting long-term survival after pancreatoduodenectomy. The PNI should be incorporated into the standard assessment of patients with AC.

18.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Article En | MEDLINE | ID: mdl-38817334

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

19.
Curr Opin Microbiol ; 79: 102490, 2024 May 30.
Article En | MEDLINE | ID: mdl-38821027

In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.

20.
Langmuir ; 40(21): 11067-11077, 2024 May 28.
Article En | MEDLINE | ID: mdl-38739539

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

...