Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.014
Filter
1.
Adv Sci (Weinh) ; : e2402086, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946582

ABSTRACT

Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences  is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.

2.
Chem Biodivers ; : e202401303, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946608

ABSTRACT

Three previously undescribed protoilludane-type sesquiterpene aryl esters, armillanals A-C (1-3), along with seven known ones (4-10) were obtained from Armillaria gallica Marxm. & Romagn. Compounds 1 and 2 were a rare class of sesquiterpenes featuring the Δ2(3) and Δ12(13)-protoilludane skeleton. Their structures were established by extensive spectroscopic methods. Based on electronic circular dichroism (ECD) calculations, the absolute configurations of three new compounds (1-3) were determined. The anti-inflammatory activity of compounds 1-10 was screened and compound 3 could dose-dependently decrease the level of lactate dehydrogenase, showing IC50 value of 4.525 µM.

3.
World J Orthop ; 15(6): 593-601, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38947265

ABSTRACT

BACKGROUND: Mazabraud's syndrome (MS) is a rare and slowly progressive benign disease characterized by the concurrent presence of fibrous dysplasia of bone and intramuscular myxoma, and is thought to be associated with mutations of the GNAS gene. To date, only about 100 cases of MS have been reported in the literature, but its standard treatment strategy remains unclear. CASE SUMMARY: We report two cases of MS in young women who underwent different treatments based on their symptoms and disease manifestations. The first patient, aged 37, received internal fixation and intravenous bisphosphonate for a pathological fracture of the right femoral neck, excision of a right vastus medialis myxoma was subsequently performed for pain control, and asymptomatic psoas myxomas were monitored without surgery. Genetic testing confirmed a GNAS gene mutation in this patient. The second patient, aged 24, underwent right vastus intermedius muscle myxoma resection, and conservative treatment for fibrous dysplasia of the ilium. These patients were followed-up for 17 months and 3 years, respectively, and are now in a stable condition. CONCLUSION: Various treatments have been selected for MS patients who suffer different symptoms. The main treatment for myxomas is surgical resection, while fibrous dysplasia is selectively treated if the patient experiences pathological fracture or severe pain. However, given the documented instances of malignant transformation of fibrous dysplasia in individuals with MS, close follow-up is necessary.

4.
mLife ; 3(2): 207-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948145

ABSTRACT

The Saccharomyces cerevisiae silencing information regulator (SIR) complex contains up to four proteins, namely Sir1, Sir2, Sir3, and Sir4. While Sir2 encodes a NAD-dependent histone deacetylase, other SIR proteins mainly function as structural and scaffold components through physical interaction with various proteins. The SIR complex displays different conformation and composition, including Sir2 homotrimer, Sir1-4 heterotetramer, Sir2-4 heterotrimer, and their derivatives, which recycle and relocate to different chromosomal regions. Major activities of the SIR complex are transcriptional silencing through chromosomal remodeling and modulation of DNA double-strand-break repair pathways. These activities allow the SIR complex to be involved in mating-type maintenance and switching, telomere and subtelomere gene silencing, promotion of nonhomologous end joining, and inhibition of homologous recombination, as well as control of cell aging. This review explores the potential link between epigenetic regulation and DNA damage response conferred by the SIR complex under various conditions aiming at understanding its roles in balancing cell survival and genomic stability in response to internal and environmental stresses. As core activities of the SIR complex are highly conserved in eukaryotes from yeast to humans, knowledge obtained in the yeast may apply to mammalian Sirtuin homologs and related diseases.

5.
bioRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38952799

ABSTRACT

CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR system. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. Importance: 2Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.

6.
Article in English | MEDLINE | ID: mdl-38958208

ABSTRACT

The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10-40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.

8.
Talanta ; 278: 126381, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38936108

ABSTRACT

Circulating tumor cell (CTC) in the blood is the main cause of cancer metastasis for death in cancer patients. It is extremely important for cancer diagnosis at an early stage and treatment to simultaneously detect and kill the CTCs. In this work, a new hybridized nanolayer, namely gold nanoparticle/gold nanorods@ Polydopamine (AuNPs/AuNRs@PDA), was coated on the Ω-shaped fiber optics (Ω-FO) for localized surface plasmonic resonance (LSPR) to perform tumor cell sensing and photothermal treatment (PTT). The PDA nanolayer was formed on a bare fiber optic through the self-polymerization of dopamine under mild conditions. The AuNRs and AuNPs were absorbed on the surface of the PDA nanolayer to form a hybridized nanolayer. The hybridized nanolayer-modified Ω-FO LSPR exhibited a high refractive index sensitivity (RIS) of 37.59 (a.u/RIU) and photothermal conversion efficiency. After being modified with the recognition element of aptamer, the Ω-FO LSPR was used to develop a sensitive and specifical tumor cell sensing. Under the irradiation of near-infrared light (NIR) laser, the Ω-FO LSPR can kill the captured tumor cells with the apoptotic/necrotic rate of 62.6 % and low side-effect for the nontarget cells. The FO LSPR sensor realized the dual functions of CTC sensing and PTT, which provided a new idea for the early diagnosis and treatment of cancer.

9.
Fitoterapia ; : 106094, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936674

ABSTRACT

In the present study, six new compounds namely, picralactones CH (1-6) along with nine known compounds (7-15) were isolated from the branches and leaves of Picrasma chinese P.Y. Chen. Their structures were determined with the help of spectroscopic techniques such as NMR, HR-ESI-MS, UV, IR and CD. Cytotoxicity of all compounds was evaluated against MDA-MB-231, SW-620 and HepG2 human cancer cell lines. Compound 4 showed cytotoxic activities.

10.
Int Immunopharmacol ; 136: 112383, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38843642

ABSTRACT

The treatment of autoimmune and inflammatory diseases often requires targeting multiple pathogenic pathways. KYS202004A is a novel bispecific fusion protein designed to antagonize TNF-α and IL-17A, pivotal in the pathophysiology of autoimmune and inflammatory diseases. Our initial efforts focused on screening for optimal structure by analyzing expression levels, purity, and binding capabilities. The binding affinity of KYS202004A to TNF-α and IL-17A was evaluated using SPR. In vitro, we assessed the inhibitory capacity of KYS202004A on cytokine-induced CXCL1 expression in HT29 cells. In vivo, its efficacy was tested using a Collagen-Induced Arthritis (CIA) model in transgenic human-IL-17A mice and an imiquimod-induced psoriasis model in cynomolgus monkeys. KYS202004A demonstrated significant inhibition of IL-17A and TNF-α signaling pathways, outperforming the efficacy of monotherapeutic agents ixekizumab and etanercept in reducing CXCL1 expression in vitro and ameliorating disease markers in vivo. In the CIA model, KYS202004A significantly reduced clinical symptoms, joint destruction, and serum IL-6 concentrations. The psoriasis model revealed that KYS202004A, particularly at a 2  mg/kg dose, was as effective as the combination of ixekizumab and etanercept. This discovery represents a significant advancement in treating autoimmune and inflammatory diseases, offering a dual-targeted therapeutic approach with enhanced efficacy over current monotherapies.


Subject(s)
Arthritis, Experimental , Interleukin-17 , Macaca fascicularis , Psoriasis , Recombinant Fusion Proteins , Tumor Necrosis Factor-alpha , Animals , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/chemically induced , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Mice , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , HT29 Cells , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Mice, Transgenic , Disease Models, Animal , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Male , Drug Evaluation, Preclinical , Imiquimod , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Inbred DBA
11.
Pharmacol Rev ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866561

ABSTRACT

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

13.
Plant Physiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875157

ABSTRACT

Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis 'Hirado Buntan', a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.

14.
Adv Sci (Weinh) ; : e2401187, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877642

ABSTRACT

Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.

15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 909-916, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884225

ABSTRACT

The stoichiometric characteristics of leaves can reflect environmental adaptation of plants, and thus the study of the relationship between them is helpful for exploring plant adaptation strategies. In this study, taking the national second-level key protection species, Ammopiptanthus mongolicus, as the research object, we set up 26 plots to collect samples, and measured the content of carbon (C), nitrogen (N), phosphorus (P) and water use efficiency (WUE) of leaves. We analyzed the relationship between leaf stoichiometric characteristics and WUE, and quantified the contributions of soil, climate, and water use efficiency to the variations of leaf stoichiometry. The results showed that C, N, and P contents in the leaves were (583.99±27.93), (24.31±2.09), and (1.83±0.06) mg·g-1, respectively. The coefficients of variation were 4.8%, 8.6%, and 3.2%, respectively, all belonging to weak variability, indicating that foliar contents of C, N and P tended to a certain stable value. The average value of N:P was 13.3, indicating that the growth of A. mongolicus was mainly limited by N. WUE was not correlated with leaf C content, but was significantly positively correlated with leaf N and P contents and N:P, and significantly negatively correlated with C:N and C:P, indicating that there was a linear synergistic trend between WUE and leaf nutrient content. The main factors influencing leaf C content and C:P were climatic factors, the leaf N content and N:P were mainly affected by soil factors, and the water use efficiency mainly affected leaf P content and C:N, indicating that the driving factors of different stoichiometric characteristics were different. The results could help eva-luate the habitat adaptation of desert plants, which would provide a theoretical basis for the conservation and management of A. mongolicus.


Subject(s)
Carbon , Nitrogen , Phosphorus , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , China , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Carbon/analysis , Carbon/metabolism , Ecosystem , Water/analysis , Water/metabolism , Water/chemistry , Adaptation, Physiological , Soil/chemistry
16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884230

ABSTRACT

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Subject(s)
Rain , Seasons , Rain/chemistry , China , Oxygen Isotopes/analysis , Environmental Monitoring/methods , Deuterium/analysis , Isotopes/analysis , Prunus domestica/chemistry , Prunus domestica/growth & development
17.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884407

ABSTRACT

Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.

18.
Nutr Metab (Lond) ; 21(1): 37, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914993

ABSTRACT

BACKGROUND AND AIMS: The impact of lipids on the overall survival (OS) of patients with malignancy has not yet been clarified. This study aimed to evaluate the effect of hyperlipidemia on the OS among Chinese patients based on Body Mass Index (BMI) stratifications and hyperlipidemia types. METHOD: The patients in this study were derived from the Investigation of the Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) trial. Kaplan-Meier was used to draw the survival curve, and the log-rank test was used to estimate the survival rates between each group. Cox proportional hazards regression models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI). RESULTS: A total of 9054 patients were included in the final study, with a median age of 59 years, and 55.3% (5004) of them were males. Regarding types of hyperlipidemia, only low high-density lipoprotein was an independent risk factor for the prognosis of all patients (HR = 1.35, 95% CI: 1.25-1.45, P < 0.001), while high total cholesterol (HR = 1.01, 95% CI: 0.90-1.15, P = 0.839) and high low-density lipoprotein (HR = 1.03, 95%CI: 0.91-1.16, P = 0.680) were not. In terms of BMI stratification, the effect of triglycerides on prognosis varied; high triglycerides were an independent risk factor for the prognosis of underweight patients (HR = 1.56, 95% CI:1.05-2.32, P = 0.027) and a protective factor for overweight patients (HR = 0.75, 95% CI: 0.63-0.89, P = 0.001). However, for normal-weight patients, there was no significant statistical difference (HR = 0.88, 95%CI: 0.75-1.03, P = 0.108). CONCLUSIONS: The impact of hyperlipidemia on the OS among patients with cancer varied by different BMI and hyperlipidemia types. BMI and hyperlipidemia type ought to be considered in combination to estimate the prognosis of patients with malignancy.

19.
Biomed Pharmacother ; 176: 116908, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850668

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), particularly advanced non-alcoholic steatohepatitis (NASH), leads to irreversible liver damage. This study investigated the therapeutic effects and potential mechanism of a novel extract from traditional Chinese medicine Alisma orientale (Sam.) Juzep (AE) on free fatty acid (FFA)-induced HepG2 cell model and high-fat diet (HFD) + carbon tetrachloride (CCl4)-induced mouse model of NASH. C57BL/6 J mice were fed a HFD for 10 weeks. Subsequently, the mice were injected with CCl4 to induce NASH and simultaneously treated with AE at daily doses of 50, 100, and 200 mg/kg for 4 weeks. At the end of the treatment, animals were fasted for 12 h and then sacrificed. Blood samples and liver tissues were collected for analysis. Lipid profiles, oxidative stress, and histopathology were examined. Additionally, a polymerase chain reaction (PCR) array was used to predict the molecular targets and potential mechanisms involved, which were further validated in vivo and in vitro. The results demonstrated that AE reversed liver damage (plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte ballooning, hepatic steatosis, and NAS score), the accumulation of hepatic lipids (TG and TC), and oxidative stress (MDA and GSH). PCR array analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that AE protects against NASH by regulating the adipocytokine signaling pathway and influencing nuclear receptors such as PPARα. Furthermore, AE increased the expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC1α) and reversed the decreased expression of PPARα in NASH mice. Moreover, in HepG2 cells, AE reduced FFA-induced lipid accumulation and oxidative stress, which was dependent on PPARα up-regulation. Overall, our findings suggest that AE may serve as a potential therapeutic approach for NASH by inhibiting lipid accumulation and reducing oxidative stress specifically through the PPARα pathway.


Subject(s)
Alisma , Diet, High-Fat , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , PPAR alpha , Plant Extracts , Signal Transduction , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , PPAR alpha/metabolism , Signal Transduction/drug effects , Humans , Alisma/chemistry , Male , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Hep G2 Cells , Diet, High-Fat/adverse effects , Mice , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Disease Models, Animal , Carbon Tetrachloride , Lipid Metabolism/drug effects
20.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1260-1268, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886424

ABSTRACT

Climate change significantly affects plant biomass and phenological occurrence time in alpine grasslands of Tibetan Plateau. The changes in phenological periods are closely related to the length of vegetative and reproductive growth periods, which may further affect aboveground biomass accumulation. In this study, based on fixed-point observations of plant biomass and phenology as well as the corresponding climatic data from 1997 to 2020 in the alpine grasslands of Tibetan Plateau, we used statistical methods such as ordinary linear regression and piecewise structural equation model to explore the characteristics of interannual climate change in the study area, the variation trends of plant biomass and phenological periods, and the correlations between biomass and phenological and climatic factors. The results showed that mean annual temperature and annual precipitation in the study area increased significantly from 1997 to 2020, suggesting a clear "warm-wet" trend. Aboveground biomass and relative biomass of Stipa sareptana var. krylovii (the dominant species) decreased significantly. However, absolute and relative biomass of subdominant species (Kobresia humilis) increased significantly, indicating that the dominance of K. humilis increased. The warm-wet climates enhanced aboveground biomass accumulation of K. humilis by extending the period of reproductive growth. Mean annual temperature and annual precipitation decreased aboveground biomass of S. sareptana by shortening the length of vegetative growth period. In a word, the warmer and wetter climate significantly affected aboveground biomass accumulation by regulating the changes in the phenological period, and the interspecific difference in their response resulted in a larger change in community composition. This study area may show a trend from alpine grassland to alpine meadow, and thus further works are urgently needed.


Subject(s)
Biomass , Climate Change , Grassland , Poaceae , Tibet , Poaceae/growth & development , China , Altitude , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...