Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2361030, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38801248

ABSTRACT

BACKGROUND: Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS: We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS: 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS: We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.


Subject(s)
Disease Outbreaks , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , China/epidemiology , Humans , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Male , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Female , Middle Aged , Adult , Aged , Genome, Bacterial , Prevalence , Child , Young Adult , Phylogeny , Vancomycin/pharmacology , Adolescent
2.
Microbiol Spectr ; : e0531222, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37768065

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of chronic infections, including reinfection, relapse, and persistent infection, especially in cystic fibrosis patients. Relapse P. aeruginosa infections are more harmful because of repeated hospitalization and undertreatment of antimicrobials. However, relapse P. aeruginosa infection in China remains largely unknown. Herein, we performed a 3-year retrospective study from 2019 to 2022 in a tertiary hospital, which included 442 P. aeruginosa isolates from 196 patients. Relapse infection was identified by screening clinical records and whole-genome sequencing (WGS). We found that 31.6% (62/196) of patients had relapsed infections. The relapse incidence of carbapenem-resistant P. aeruginosa infection (51.4%) is significantly higher than that of carbapenem-susceptible P. aeruginosa infection (20.2%, P < 0.0001). These isolates were assigned to 50 distinct sequence types and sporadically distributed in phylogeny, indicating that relapsed infections were not caused by certain lineages. Fast adaptation and evolution of P. aeruginosa isolates were reflected by dynamic changes of antimicrobial resistance, gene loss and acquisition, and single-nucleotide polymorphisms during relapse episodes. Remarkably, a convergent non-synonymous mutation that occurs in a pyochelin-associated virulence gene fptA (T1056C, M252T) could be a considerable target for the diagnosis and treatment of relapse P. aeruginosa infection. These findings suggest that integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapsed infections. Continued surveillance of the genomic dynamics of relapse P. aeruginosa infection will generate further knowledge for optimizing treatment and prevention in the future.IMPORTANCEPseudomonas aeruginosa is a predominant pathogen that causes various chronic infections. Relapse infections promote the adaptation and evolution of antimicrobial resistance and virulence of P. aeruginosa, which obscure evolutionary trends and complicate infection management. We observed a high incidence of relapse P. aeruginosa infection in this study. Whole-genome sequencing (WGS) revealed that relapse infections were not caused by certain lineages of P. aeruginosa isolates. Genomic dynamics of relapse P. aeruginosa among early and later stages reflected a plasticity scattered through the entire genome and fast adaptation and genomic evolution in different ways. Remarkably, a convergent evolution was found in a significant virulence gene fptA, which could be a considerable target for diagnosis and treatment. Taken together, our findings highlight the importance of longitudinal surveillance of relapse P. aeruginosa infection in China since cystic fibrosis is rare in Chinese. Integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapse infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...