Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.678
1.
Radiother Oncol ; : 110367, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38834152

BACKGROUND: The number of metastatic lymph nodes (MLNs) is crucial for the survival of nasopharyngeal carcinoma (NPC), but manual counting is laborious. This study aims to explore the feasibility and prognostic value of automatic MLNs segmentation and counting. METHODS: We retrospectively enrolled 980 newly diagnosed patients in the primary cohort and 224 patients from two external cohorts. We utilized the nnUnet model for automatic MLNs segmentation on multimodal magnetic resonance imaging. MLNs counting methods, including manual delineation-assisted counting (MDAC) and fully automatic lymph node counting system (AMLNC), were compared with manual evaluation (Gold standard). RESULTS: In the internal validation group, the MLNs segmentation results showed acceptable agreement with manual delineation, with a mean Dice coefficient of 0.771. The consistency among three counting methods was as follows0.778 (Gold vs. AMLNC), 0.638 (Gold vs. MDAC), and 0.739 (AMLNC vs. MDAC). MLNs numbers were categorized into three-category variable (1-4, 5-9, > 9) and two-category variable (<4, ≥ 4) based on the gold standard and AMLNC. These categorical variables demonstrated acceptable discriminating abilities for 5-year overall survival (OS), progression-free, and distant metastasis-free survival. Compared with base prediction model, the model incorporating two-category AMLNC-counting numbers showed improved C-indexes for 5-year OS prediction (0.658 vs. 0.675, P = 0.045). All results have been successfully validated in the external cohort. CONCLUSIONS: The AMLNC system offers a time- and labor-saving approach for fully automatic MLNs segmentation and counting in NPC. MLNs counting using AMLNC demonstrated non-inferior performance in survival discrimination compared to manual detection.

2.
Curr Med Sci ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842773

OBJECTIVE: This study aimed to compare the performance of standard-definition white-light endoscopy (SD-WL), high-definition white-light endoscopy (HD-WL), and high-definition narrow-band imaging (HD-NBI) in detecting colorectal lesions in the Chinese population. METHODS: This was a multicenter, single-blind, randomized, controlled trial with a non-inferiority design. Patients undergoing endoscopy for physical examination, screening, and surveillance were enrolled from July 2017 to December 2020. The primary outcome measure was the adenoma detection rate (ADR), defined as the proportion of patients with at least one adenoma detected. The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression. RESULTS: Out of 653 eligible patients enrolled, data from 596 patients were analyzed. The ADRs were 34.5% in the SD-WL group, 33.5% in the HD-WL group, and 37.5% in the HD-NBI group (P=0.72). The advanced neoplasm detection rates (ANDRs) in the three arms were 17.1%, 15.5%, and 10.4% (P=0.17). No significant differences were found between the SD group and HD group regarding ADR or ANDR (ADR: 34.5% vs. 35.6%, P=0.79; ANDR: 17.1% vs. 13.0%, P=0.16, respectively). Similar results were observed between the HD-WL group and HD-NBI group (ADR: 33.5% vs. 37.7%, P=0.45; ANDR: 15.5% vs. 10.4%, P=0.18, respectively). In the univariate and multivariate logistic regression analyses, neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL (HD-WL: OR 0.91, P=0.69; HD-NBI: OR 1.15, P=0.80). CONCLUSION: HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients. It can be concluded that HD-NBI or HD-WL is not superior to SD-WL, but more effective instruction may be needed to guide the selection of different endoscopic methods in the future. Our study's conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources, especially advanced imaging technologies.

3.
AMB Express ; 14(1): 63, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824272

Adequate bowel cleansing is crucial for endoscopic diagnosis and treatment, and the recovery of gut microbiota after intestinal cleansing is also important. A hypertonic syrup predominantly comprising L-arabinose and D-xylose (20% xylo-oligosaccharides) can be extracted from the hemicellulose of corn husks and cobs. L-Arabinose and xylo-oligosaccharides have been reported to relieve constipation and improve the gut microbial environment. This study evaluated the bowel cleansing effect of the aforementioned syrup and its influence on the organism and intestinal microbiota after cleansing in comparison with polyethylene glycol-4000 (PEG-4000) in mice. Bowel cleansing was performed using syrup or PEG-4000 in C57BL/6J mice, and the effect of intestinal preparation and its influence on serum electrolytes and gut microbiota after bowel cleansing were evaluated. The volume of intestinal residual feces in the syrup group was significantly lower than that in the PEG-4000 group. Additionally, syrup disturbed serum electrolytes more mildly than PEG-4000. Alpha diversity in the gut microbiota was significantly higher in the syrup group than in the PEG-4000 group on the first day after bowel cleansing. However, no difference in beta diversity was observed between the two groups. Syrup increased the abundance of Bifidobacteria and Christensenella and decreased the abundance of Akkermansia in comparison with PEG-4000 on the first day after bowel cleansing. Thus, this syrup has potential clinical use as a bowel cleansing agent given the above effects, its benefits and safety, and better taste and acceptability.

4.
J Med Virol ; 96(6): e29711, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847304

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Genome, Viral , Phylogeny , Respiratory Tract Infections , Humans , China/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Male , Female , Retrospective Studies , Respiratory System/virology , Child, Preschool , Adult , Child , RNA, Viral/genetics , Middle Aged
5.
Nat Commun ; 15(1): 3759, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704384

Millimeter-scale soft continuum robots offer safety and adaptability in transluminal procedures due to their passive compliance, but this feature necessitates interactions with surrounding lumina, leading to potential medical risks and restricted mobility. Here, we introduce a millimeter-scale continuum robot, enabling apical extension while maintaining structural stability. Utilizing phase transition components, the robot executes cycles of tip-based elongation, steered accurately through programmable magnetic fields. Each motion cycle features a solid-like backbone for stability, and a liquid-like component for advancement, thereby enabling autonomous shaping without reliance on environmental interactions. Together with clinical imaging technologies, we demonstrate the capability of navigating through tortuous and fragile lumina to transport microsurgical tools. Once it reaches larger anatomical spaces such as stomach, it can morph into functional 3D structures that serve as surgical tools or sensing units, overcoming the constraints of initially narrow pathways. By leveraging this design paradigm, we anticipate enhanced safety, multi-functionality, and cooperative capabilities among millimeter-scale continuum robots, opening new avenues for transluminal robotic surgery.


Robotic Surgical Procedures , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Humans , Equipment Design , Robotics/instrumentation , Robotics/methods , Magnetic Fields , Microsurgery/instrumentation , Microsurgery/methods , Animals , Magnetics
6.
Heliyon ; 10(10): e31307, 2024 May 30.
Article En | MEDLINE | ID: mdl-38803884

Objectives: N7-methylguanosine (m7G) plays a crucial role in mRNA metabolism and other biological processes. However, its regulators' function in Primary Sjögren's Syndrome (PSS) remains enigmatic. Methods: We screened five key m7G-related genes across multiple datasets, leveraging statistical and machine learning computations. Based on these genes, we developed a prediction model employing the extreme gradient boosting decision tree (XGBoost) method to assess PSS risk. Immune infiltration in PSS samples was analyzed using the ssGSEA method, revealing the immune landscape of PSS patients. Results: The XGBoost model exhibited high accuracy, AUC, sensitivity, and specificity in both training, test sets and extra-test set. The decision curve confirmed its clinical utility. Our findings suggest that m7G methylation might contribute to PSS pathogenesis through immune modulation. Conclusions: m7G regulators play an important role in the development of PSS. Our study of m7G-realted genes may inform future immunotherapy strategies for PSS.

7.
Heliyon ; 10(10): e31557, 2024 May 30.
Article En | MEDLINE | ID: mdl-38803981

Accurate prediction of the prognosis of nasopharyngeal carcinoma (NPC) is important for treatment. Lymph nodes metastasis is an important predictor for distant failure and regional recurrence in patients with NPC. Traditionally, subjective radiological evaluation increases concerns regarding the accuracy and consistency of predictions. Radiomics is an objective and quantitative evaluation algorithm for medical images. This retrospective analysis was conducted based on the data of 729 patients newly diagnosed with NPC without distant metastases to evaluate the performance of radiomics pretreatment using magnetic resonance imaging (MRI)-determined metastatic lymph nodes models to predict NPC prognosis with three delineation methods. Radiomics features were extracted from all lymph nodes (ALN), largest lymph node (LLN), and largest slice of the largest lymph node (LSLN) to generate three radiomics signatures. The radiomics signatures, clinical model, and radiomics-clinic merged models were developed in training cohort for predicting overall survival (OS). The results showed that LSLN signature with clinical factors predicted OS with high accuracy and robustness using pretreatment MR-determined metastatic lymph nodes (C-index [95 % confidence interval]: 0.762[0.760-0.763]), providing a new tool for treatment planning in NPC.

8.
ISA Trans ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38744610

Electro-hydraulic systems are extensively utilized to generate desired acceleration waveforms to provide a vibration environment for testing the performance and reliability of objects in various industrial applications. However, as electro-hydraulic systems are often affected by some inevitable drawbacks resulted from hydraulic nonlinearities, unwanted dynamic variations and disturbances, the generated acceleration waveform is generally far behind the expectation. In this paper, a convex combined adaptive controller with input shaping technique is proposed for enhancing the transient acceleration waveform replication accuracy of electro-hydraulic systems. The proposed controller is comprised of a three variable controller at the bottom level, an input shaping technique controller at the middle level, and a convex combined adaptive controller at the upper level. The three variable controller is firstly utilized for the establishment of a fundamental closed-loop acceleration control system, and then the input shaping technique controller is constructed by introducing an offline designed inverse prefilter utilizing the multi-innovation recursive least squares algorithm and the zero magnitude error tracking algorithm. The convex combined adaptive controller at the upper level is comprised of two individual adaptive filters with high and low step sizes, which provides the merits of fast convergence rate and high tracking accuracy, and it is further exploited to address for system's dynamic variations, model uncertainties and unexpected perturbations. Comparative experiments of the proposed controller with a manually generated random waveform and a recorded earthquake waveform as the testing inputs are conducted on a typical electro-hydraulic test bench, and the corresponding results demonstrate the feasibility and superiority of the proposed controller in improving the transient acceleration waveform replication performance of electro-hydraulic systems.

9.
Front Bioeng Biotechnol ; 12: 1379679, 2024.
Article En | MEDLINE | ID: mdl-38737542

Background: Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods: In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results: In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion: Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.

10.
Heliyon ; 10(10): e30915, 2024 May 30.
Article En | MEDLINE | ID: mdl-38778948

Background: Complementary and alternative medicine (CAM) has emerged to combat the global COVID-19 pandemic. However, no studies have been conducted to evaluate the attitudes, knowledge, and barriers of Chinese clinical and nursing students in implementing CAM during this period. Objective: The aim of this study was to investigate the attitude, knowledge, and barriers of Chinese clinical and nursing students in using CAM in the context of COVID-19. Methods: An online-based cross-sectional survey was carried out among Chinese medical students, majoring in clinical medicine or nursing, in Nanjing, Jiangsu Province, and Zhengzhou, Henan Province from May to July 2022. A total of 402 clinical and 644 nursing students responded to a self-administered questionnaire through the Questionnaire Star and WeChat APPs. SPSS 25 (version 25) was used for data analysis. Proportions were compared by Chi-square test. Level of significance between groups was analyzed using independent student t-test and Mann-Whitney U test. Results: The average score of attitude was 46.63 (SD: 7.38) in clinical students and 49.84 (SD: 6.76) in nursing students. The top four most commonly used CAM treatments in China were proprietary Chinese medicine, diet therapy, decoction, and acupuncture and moxibustion (59.66 %, 22.28 %, 11.66 %, 9.85 %). The students had a good mastery of knowledge about CAM-based prevention and control of COVID-19 (mean score 7.36). The score of CAM knowledge in nursing students was significantly higher than that in clinical students (7.56 VS 7.04, P = 0.000). Gender, grade, previous use, age, and knowledge score could affect students' attitude towards CAM. The main barriers in spreading CAM use included time-consumption, bad taste, and fear of treatment-related pain (24.5 %). Compared with clinical students, nursing students were more likely to recommend CAM to patients in the future (P = 0.002). Conclusions: During the COVID-19 pandemic, nursing students were more positive towards CAM use, had a better mastery of CAM knowledge than clinical students. CAM is expected to provide better outcomes in COVID-19 patients. Future studies should focus on the changes in students' attitudes over time and exploration of influencing factors on CAM use.

11.
J Hazard Mater ; 473: 134675, 2024 May 22.
Article En | MEDLINE | ID: mdl-38788578

Understanding of characteristics and transport of perfluoroalkyl acids (PFAAs) in heterogeneous estuarine environments is limited. Furthermore, the role of suspended particles (SPS) in different layers remains unclear. This study explores the multiphase distribution process and mechanism of PFAAs controlled by SPS across surface and bottom layers in five small estuaries. Peaks in PFAA concentrations are consistently observed at strongly stratified sites. Concentrations of the PFAAs in both surface and bottom SPS decreased as the degree of mixing increased from strongly stratified levels to well-mixed levels. The water-SPS partitioning of some short-chain PFAAs (PFBS, PFHxA, and PFHpA) is influenced by environmental factors (pH, depth, temperature, and salinity) due to electrostatic interactions, while the sorption of some long-chain PFAAs (PFOA, PFOS, and PFNA) is controlled by SPS and dissolved organic carbon (OC), driven by hydrophobic interactions. Additionally, SPS dominates OC transport in estuarine systems, except in sandy sediment environments. SPS plays a dominant role in PFAA partitioning in both surface and bottom water-SPS systems (p < 0.05), and salinity only significantly affects PFBS in bottom layer (p < 0.01). These findings are critical for understanding the drivers of PFAA partitioning and the roles of SPS in different layers, underscoring the necessity of considering particle-associated PFAA fractions in future coastal environmental management.

12.
Fam Consum Sci Res J ; 52(3): 213-225, 2024 Mar.
Article En | MEDLINE | ID: mdl-38774766

Despite Latinx grandparents' substantial involvement in child rearing, there is limited understanding of their child feeding practices. A survey examined 80 Latinx mothers' perception of Latinx grandparents' feeding practices and interaction with parents. Results showed grandparents engaged in positive feeding somewhat frequently and negative feeding somewhat infrequently. Mother-grandparent disagreement and grandparent-parent(s) communication on child feeding occurred at a moderate level of frequency. Mother-grandparent disagreement was associated with higher frequency of grandparents' negative feeding, while grandparent-parent(s) communication was associated with higher frequency of positive feeding by grandparents. Finally, grandparents' behaviors and practices varied depending on characteristics of grandparents, mothers, and children.

13.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711089

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Mesenchymal Stem Cells , Prostatic Hyperplasia , Transforming Growth Factor beta , rho-Associated Kinases , rho-Associated Kinases/metabolism , Male , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Prostate/pathology , Prostate/metabolism , Cell Movement , Mice , Stromal Cells/metabolism , Stromal Cells/pathology
14.
Org Lett ; 26(21): 4438-4442, 2024 May 31.
Article En | MEDLINE | ID: mdl-38767303

Hydrothiolation presents an attractive way to transform allenes into allylic thioethers. Herein, we described an efficient visible-light photoredox-promoted nickel-catalyzed hydrothiolation of allenes with functionalized aromatic and aliphatic thiols. This synergistic catalytic system exhibits unprecedentedly high reactivities and regiocontrol for the construction of allylic thioethers, representing the unique synthetic utility of the earth-abundant Ni-catalyzed method compared with the related noble-metal-catalyzed allylation reactions.

15.
ACS Appl Mater Interfaces ; 16(19): 25404-25414, 2024 May 15.
Article En | MEDLINE | ID: mdl-38692284

Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.


Elastomers , Liquid Crystals , Nanotubes, Carbon , Liquid Crystals/chemistry , Elastomers/chemistry , Nanotubes, Carbon/chemistry , Porosity , Solvents/chemistry , Touch/physiology , Artificial Organs , Muscle, Skeletal/physiology , Muscle, Skeletal/chemistry , Humans
16.
J Environ Manage ; 359: 120987, 2024 May.
Article En | MEDLINE | ID: mdl-38692029

The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 µg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.


Coal Ash , Nanocomposites , Titanium , Nanocomposites/chemistry , Titanium/chemistry , Coal Ash/chemistry , Catalysis , Adsorption , Solid Waste , Water Pollutants, Chemical/chemistry
17.
J Cereb Blood Flow Metab ; : 271678X241258576, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820436

Spontaneous cerebral vasomotion, characterized by ∼0.1 Hz rhythmic contractility, is crucial for brain homeostasis. However, our understanding of vasomotion is limited due to a lack of high-precision analytical methods to determine single vasomotion events at basal levels. Here, we developed a novel strategy that integrates a baseline smoothing algorithm, allowing precise measurements of vasodynamics and concomitant Ca2+ dynamics in mouse cerebral vasculature imaged by two-photon microscopy. We identified several previously unrecognized vasomotion properties under different physiological and pathological conditions, especially in ischemic stroke, which is a highly harmful brain disease that results from vessel occlusion. First, the dynamic characteristics between SMCs Ca2+ and corresponding arteriolar vasomotion are correlated. Second, compared to previous diameter-based estimations, our radius-based measurements reveal anisotropic vascular movements, enabling a more precise determination of the latency between smooth muscle cell (SMC) Ca2+ activity and vasoconstriction. Third, we characterized single vasomotion event kinetics at scales of less than 4 seconds. Finally, following pathological vasoconstrictions induced by ischemic stroke, vasoactive arterioles entered an inert state and persisted despite recanalization. In summary, we developed a highly accurate technique for analyzing spontaneous vasomotion, and our data suggested a potential strategy to reduce stroke damage by promoting vasomotion recovery.

18.
BMC Med Imaging ; 24(1): 121, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789936

OBJECTIVES: At present, there are many limitations in the evaluation of lymph node metastasis of lung adenocarcinoma. Currently, there is a demand for a safe and accurate method to predict lymph node metastasis of lung cancer. In this study, radiomics was used to accurately predict the lymph node status of lung adenocarcinoma patients based on contrast-enhanced CT. METHODS: A total of 503 cases that fulfilled the analysis requirements were gathered from two distinct hospitals. Among these, 287 patients exhibited lymph node metastasis (LNM +) while 216 patients were confirmed to be without lymph node metastasis (LNM-). Using both traditional and deep learning methods, 22,318 features were extracted from the segmented images of each patient's enhanced CT. Then, the spearman test and the least absolute shrinkage and selection operator were used to effectively reduce the dimension of the feature data, enabling us to focus on the most pertinent features and enhance the overall analysis. Finally, the classification model of lung adenocarcinoma lymph node metastasis was constructed by machine learning algorithm. The Accuracy, AUC, Specificity, Precision, Recall and F1 were used to evaluate the efficiency of the model. RESULTS: By incorporating a comprehensively selected set of features, the extreme gradient boosting method (XGBoost) effectively distinguished the status of lymph nodes in patients with lung adenocarcinoma. The Accuracy, AUC, Specificity, Precision, Recall and F1 of the prediction model performance on the external test set were 0.765, 0.845, 0.705, 0.784, 0.811 and 0.797, respectively. Moreover, the decision curve analysis, calibration curve and confusion matrix of the model on the external test set all indicated the stability and accuracy of the model. CONCLUSIONS: Leveraging enhanced CT images, our study introduces a noninvasive classification prediction model based on the extreme gradient boosting method. This approach exhibits remarkable precision in identifying the lymph node status of lung adenocarcinoma patients, offering a safe and accurate alternative to invasive procedures. By providing clinicians with a reliable tool for diagnosing and assessing disease progression, our method holds the potential to significantly improve patient outcomes and enhance the overall quality of clinical practice.


Adenocarcinoma of Lung , Deep Learning , Lung Neoplasms , Lymphatic Metastasis , Tomography, X-Ray Computed , Humans , Lymphatic Metastasis/diagnostic imaging , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Adult , Radiomics
19.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article En | MEDLINE | ID: mdl-38697125

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Genetic Predisposition to Disease , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair/drug effects , Mice, Nude , Mice, Inbred BALB C , Adult
20.
Bioact Mater ; 38: 1-30, 2024 Aug.
Article En | MEDLINE | ID: mdl-38699243

Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.

...