Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.921
Filter
1.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951255

ABSTRACT

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Cytokines , Interleukin-6 , Janus Kinase 2 , Kidney Neoplasms , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Ubiquitins , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cytokines/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice , Cell Line, Tumor , Male , Cell Movement , Female , Apoptosis , Gene Expression Regulation, Neoplastic , Prognosis , Disease Progression
2.
Front Neurol ; 15: 1413582, 2024.
Article in English | MEDLINE | ID: mdl-38974685

ABSTRACT

Background: Epilepsy ranks among the most common neurological disorders worldwide, frequently accompanied by depression as a prominent comorbidity. This study employs bibliometric analysis to reveal the research of comorbid epilepsy and depression over the past two decades, aiming to explore trends and contribute insights to ongoing investigations. Methods: We conducted a comprehensive search on the Web of Science Core Collection database and downloaded relevant publications on comorbid epilepsy and depression published from 2003 to 2023. VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results: A total of 5,586 publications related to comorbid epilepsy and depression were retrieved, with a general upward trend despite slight fluctuations in annual publications. Publications originated from 121 countries and 636 institutions, with a predominant focus on clinical research. The United States led in productivity (1,529 articles), while Melbourne University emerged as the most productive institution (135 articles). EPILEPSY & BEHAVIOR was the journal with the highest publication output (1,189 articles) and citation count. Keyword analysis highlighted emerging trends, including "recognitive impairment" and "mental health," indicating potential future research hotspots and trends. Conclusion: This study is one of the first to perform a bibliometric analysis of the 20-year scientific output of comorbid epilepsy and depression. While research has trended upwards, ambiguity in pathogenesis and the absence of standardized diagnostic guidelines remain concerning. Our analysis offers valuable guidance for researchers, informing that this might be a strong area for future collaborations.

4.
J Biochem Mol Toxicol ; 38(7): e23767, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003575

ABSTRACT

MicroRNAs (miRNAs) are a class of small RNA genes with important roles in cancer biology regulation. There are considerable studies regarding the roles of microRNA-505-3p (miR-505-3p) in cancer development and progression, but the function of miR-505-3p in epithelial ovarian cancer (EOC) has not been fully clarified. Comparative analysis of miRNA expression data set was used to select differentially expressed miRNAs. Quantitative real-time polymerase chain reaction was applied to detect expression levels of RNAs, while western blot and immunofluorescence staining were performed to detect expression levels of proteins of interest. The motility of EOC cells was assessed by wound healing and transwell assays. The binding and regulating relationship between miRNA and its direct target gene was investigated by dual-luciferase assay. Our results show that miR-505-3p was upregulated in recurrent EOC, which significantly inhibits EOC cell motility via modulating cell epithelial-mesenchymal transition. Furthermore, our results indicated that PEAK1 expression was inhibited by direct binding of miR-505-3p into its 3'-URT in EOC cells. Importantly, knockdown of PEAK1 attenuated the effect of mi-505-3p inhibitor on EOC cell migration and invasion. In conclusion, our findings indicate that miRNA-505-3p inhibits EOC cell motility by targeting PEAK1.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs , Ovarian Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics
5.
J Asthma ; : 1-13, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021077

ABSTRACT

OBJECTIVE: The gut-lung axis involves microbial and product interactions between the lung and intestine. Antibiotics for chronic asthma can cause intestinal dysbiosis, disrupting this axis. Sodium houttuyfonate (SH) has diverse biological activities, including modifying gut microbiota, antibacterial, and anti-inflammatory. This study aims to explore the relationship between SH, CD4+ T cells, and gut microbiota. METHODS: Allergic asthma was experimentally induced in mice through injection and inhalation of ovalbumin. After the administration of different amounts of SH, ELISA was utilized to ascertain the levels of inflammatory cytokines in the serum, flow cytometry was used to examine the levels of Th1/Th2 cytokines in CD4+ cells from lung tissues. The expression of T-bet and GATA3 in lung tissue was determined by Western blotting and quantitative real-time PCR assay. Gut microbiota was determined by 16S rRNA gene sequencing. RESULTS: The results showed that SH can alleviate pulmonary injury in asthmatic mice, reducing serum levels of IL-4, IL-5, and IL-13 while simultaneously increasing IFN-γ. Furthermore, SH has been observed to modulate the balance of Th1/Th2 cells by up-regulating the mRNA and protein expression of T-bet but down-regulating GATA3 in the lung tissues of asthmatic mice, thereby promoting the differentiation of Th1 cells. Additionally, SH can regulate the variety and composition of gut microbiota especially genus Akkermansia in asthmatic mice. CONCLUSION: SH can alleviate asthma through the regulation of Th1/Th2 cells and gut microbiota.

6.
Mol Med ; 30(1): 102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009982

ABSTRACT

BACKGROUND: Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS: THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS: The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION: We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.


Subject(s)
Ferroptosis , Necroptosis , Humans , THP-1 Cells , Cell Membrane/metabolism , Cell Nucleus/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Piperazines/pharmacology , Acrylamides , Sulfonamides , RNA-Binding Proteins , Nuclear Pore Complex Proteins
7.
J Integr Plant Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953749

ABSTRACT

The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.

8.
Nat Biotechnol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956324

ABSTRACT

The continued development of novel genome editors calls for a universal method to analyze their off-target effects. Here we describe a versatile method, called Tracking-seq, for in situ identification of off-target effects that is broadly applicable to common genome-editing tools, including Cas9, base editors and prime editors. Through tracking replication protein A (RPA)-bound single-stranded DNA followed by strand-specific library construction, Tracking-seq requires a low cell input and is suitable for in vitro, ex vivo and in vivo genome editing, providing a sensitive and practical genome-wide approach for off-target detection in various scenarios. We show, using the same guide RNA, that Tracking-seq detects heterogeneity in off-target effects between different editor modalities and between different cell types, underscoring the necessity of direct measurement in the original system.

9.
Chemistry ; : e202401718, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945833

ABSTRACT

Contact electrification (CE) is an emerging strategy for controlling the performance of metal nanoparticle (NP) catalysts. The underlying physical principle of this control is the sensitivity of the Fermi level to metal-metal contacts. This change in electronic structure has a direct impact on surface properties and chemical reactivity. The concept article briefly introduces the basic theory of CE and its relationship to catalytic performance. We then highlight selected recent examples of advances in the preparation of hybrid metal NP assemblies, experimental techniques for characterizing CE, and finally applications of CE for altering catalytic performance.

10.
Nat Cell Biol ; 26(6): 962-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839978

ABSTRACT

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Oocytes , Oogenesis , Animals , Oocytes/metabolism , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Oogenesis/genetics , Mice , Histones/metabolism , Histones/genetics , Embryo, Mammalian/metabolism , Mice, Inbred C57BL , Embryonic Development/genetics , Ovarian Follicle/metabolism , Mice, Knockout
12.
Sci Rep ; 14(1): 14376, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909094

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients. In another validation cohort of 55 patients with IPF compared to 19 healthy controls, it was found that succinate, an intermediate product of TCA cycle, has diagnostic and prognostic value in IPF. The cut-off levels of serum succinate were 98.36 µM for distinguishing IPF from healthy controls (sensitivity, 83.64%; specificity, 63.16%; likelihood ratio, 2.27, respectively). Moreover, a high serum succinate level was independently associated with higher rates of disease progression (OR 13.087, 95%CI (2.819-60.761)) and mortality (HR 3.418, 95% CI (1.308-8.927)). In addition, accumulation of succinate and increased expression of the succinate receptor GPR91 were found in both IPF patients and BLM mouse models of pulmonary fibrosis. Reducing succinate accumulation in BLM mice alleviated pulmonary fibrosis and 21d mortality, while exogenous administration of succinate can aggravate pulmonary fibrosis in BLM mice. Furthermore, GPR91 deficiency protected against lung fibrosis caused by BLM. In vitro, succinate promoted the activation of lung fibroblasts by activating ERK pathway through GPR91. In summary, succinate is a promising biomarker for diagnosis and prognosis of IPF. The accumulation of succinate may promote fibroblast activation through GPR91 and pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Receptors, G-Protein-Coupled , Succinic Acid , Succinic Acid/metabolism , Succinic Acid/blood , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/mortality , Animals , Male , Mice , Female , Middle Aged , Prognosis , Aged , Disease Models, Animal , Biomarkers/blood , Fibroblasts/metabolism , Citric Acid Cycle
13.
Microbiome ; 12(1): 115, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918820

ABSTRACT

BACKGROUND: Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS: Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS: We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.


Subject(s)
Archaea , Bacteria , Estuaries , Metagenome , Metagenomics , Salinity , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/genetics , Archaea/classification , Archaea/metabolism , Adaptation, Physiological , Microbiota/genetics , Seawater/microbiology , Water Microbiology
14.
Cell Death Dis ; 15(6): 416, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879600

ABSTRACT

Tripartite motif 8 (TRIM8) is an E3 ligase that plays dual roles in various tumor types. The biological effects and underlying mechanism of TRIM8 in hepatocellular carcinoma (HCC) remain unknown. Hepatocyte nuclear factor 1α (HNF1α) is a key transcriptional factor that plays a significant role in regulating hepatocyte differentiation and liver function. The reduced expression of HNF1α is a critical event in the development of HCC, but the underlying mechanism for its degradation remains elusive. In this study, we discovered that the expression of TRIM8 was upregulated in HCC tissues, and was positively correlated with aggressive tumor behavior of HCC and shorter survival of HCC patients. Overexpression of TRIM8 promoted the proliferation, colony formation, invasion, and migration of HCC cells, while TRIM8 knockdown or knockout exerted the opposite effects. RNA sequencing revealed that TRIM8 knockout suppresses several cancer-related pathways, including Wnt/ß-catenin and TGF-ß signaling in HepG2 cells. TRIM8 directly interacts with HNF1α, promoting its degradation by catalyzing polyubiquitination on lysine 197 in HCC cells. Moreover, the cancer-promoting effects of TRIM8 in HCC were abolished by the HNF1α-K197R mutant in vitro and in vivo. These data demonstrated that TRIM8 plays an oncogenic role in HCC progression through mediating the ubiquitination of HNF1α and promoting its protein degradation, and suggests targeting TRIM8-HNF1α may provide a promising therapeutic strategy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Hepatocyte Nuclear Factor 1-alpha , Liver Neoplasms , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
15.
Antioxidants (Basel) ; 13(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38929087

ABSTRACT

Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events, culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC), has a narrow therapeutic window, and early treatment is essential for a satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end products (AGEs) and the consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase 1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in the APAP-mediated activation of RAGE and downstream cell death cascades. Constitutive Glo-1-knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were used as tools. Our findings showed elevated oxidative stress resulting from the activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild-type controls. A unique feature of the hepatic necrosis in GKO mice was the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than the inflammation seen in the wild type. The GSH surrogate and general antioxidant ψ-GSH alleviated APAP toxicity irrespective of the Glo-1 status, suggesting that oxidative stress is the primary driver of APAP toxicity. Overall, the exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against the initial stages of APAP overdose.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167284, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851304

ABSTRACT

AIM: Methamphetamine (METH) chronic exposure is an important risk factor for hypertension development. However, the mechanisms behind METH-induced hypertension remain unclear. Therefore, we aimed to reveal the potential mechanisms underlying METH-induced hypertension. METHODS AND RESULTS: We structured the mouse hypertension model by METH, and observed that METH-treated mice have presented vascular remodeling (large-and small-size arteries) with collagen deposit around the vessel and increasing blood pressure (BP) and Sigma1 receptor (Sigmar1) in vascular tissue. We hypothesized that Sigmar1 is crucial in METH-induced hypertension and vascular remodeling. Sigmar1 knockout (KO) mice and antagonist (BD1047) pretreated mice exposed to METH for six-week showed higher BP and more collagen deposited around vessels than wild-type (WT) mice exposed to METH for six-week, in contrast, mice pretreated with Sigmar1 agonist (PRE-084) had unchanged BP and perivascular collagen despite the six-week METH exposure. Furthermore, we found that METH exposure induced vascular smooth muscle cells (VSMCs) and mesenchymal stem cells to differentiate into the myofibroblast-like cell and secrete collagen into surrounding vessels. Mechanically, Sigmar1 can suppress the COL1A1 expression by blocking the classical fibrotic TGF-ß/Smad2/3 signaling pathway in METH-exposed VSMCs and mesenchymal stem cells. CONCLUSION: Our results suggest that Sigmar1 is involved in METH-induced hypertension and vascular fibrosis by blocking the activation of the TGF-ß/Smad2/3 signaling pathway. Accordingly, Sigmar1 may be a novel therapeutic target for METH-induced hypertension and vascular fibrosis.

17.
Nat Genet ; 56(7): 1494-1502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849613

ABSTRACT

Long interspersed nuclear element-1 (LINE-1 or L1) is a retrotransposon group that constitutes 17% of the human genome and shows variable expression across cell types. However, the control of L1 expression and its function in gene regulation are incompletely understood. Here we show that L1 transcription activates long-range gene expression. Genome-wide CRISPR-Cas9 screening using a reporter driven by the L1 5' UTR in human cells identifies functionally diverse genes affecting L1 expression. Unexpectedly, altering L1 expression by knockout of regulatory genes impacts distant gene expression. L1s can physically contact their distal target genes, with these interactions becoming stronger upon L1 activation and weaker when L1 is silenced. Remarkably, L1s contact and activate genes essential for zygotic genome activation (ZGA), and L1 knockdown impairs ZGA, leading to developmental arrest in mouse embryos. These results characterize the regulation and function of L1 in long-range gene activation and reveal its importance in mammalian ZGA.


Subject(s)
CRISPR-Cas Systems , Long Interspersed Nucleotide Elements , Humans , Long Interspersed Nucleotide Elements/genetics , Animals , Mice , Transcriptional Activation , Zygote/metabolism , Transcription, Genetic , Gene Expression Regulation , 5' Untranslated Regions
18.
Gastroenterology ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906512

ABSTRACT

BACKGROUNDS & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.

19.
Nanoscale Adv ; 6(12): 3220-3228, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38868834

ABSTRACT

Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 µJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.

20.
Angew Chem Int Ed Engl ; : e202406596, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872354

ABSTRACT

Electrolytes endowed with high oxidation/reduction interfacial stability, fast Li-ion desolvation process and decent ionic conductivity over wide temperature region are known critical for low temperature and fast-charging performance of energy-dense batteries, yet these characteristics are rarely satisfied simultaneously. Here, we report anchored weakly-solvated electrolytes (AWSEs), that are designed by extending the chain length of polyoxymethylene ether electrolyte solvent, can achieve the above merits at moderate salt concentrations. The -O-CH2-O- segment in solvent enables the weak four-membered ring Li+ coordination structure and the increased number of segments can anchor the solvent by Li+ without largely sacrificing the ionic dissociation ability. Therefore, the single salt/single solvent AWSEs enable solvent co-intercalation-free behavior towards graphite (Gr) anode and high oxidation stability towards high-nickel cathode (LiNi0.8Co0.1Mn0.1O2-NCM811), as well as the formation of inorganic rich electrode/electrolyte interphase on both of them due to the anion-rich solvation shells. The capacity retention of Gr||NCM811 Ah-class pouch cell can reach 70.85% for 1000 cycles at room-temperature and 75.86% for 400 cycles at -20 °C. This work points out a promising path toward the molecular design of electrolyte solvents for high-energy/power battery systems that are adaptive for extreme conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...