Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(31): 40653-40666, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052487

ABSTRACT

The key to saving lives is to achieve instant and effective sealing hemostasis in the event of emergency bleeding. Herein, a plant oil-based EMTA/Zn2+ bioadhesive is prepared by a facile reaction of epoxidized soybean oil (ESO) with methacrylic acid (MAA) and tannic acid (TA), followed by the addition of zinc ions for coordination with TA. The EMTA/Zn2+ bioadhesive can be rapidly cured in situ at the wound site through photo-cross-linking under ultraviolet (UV) light-emitting diode (LED) irradiation within 30 s, achieving ultrastrong wet-tissue adhesion performance of 92.4 and 51.8 kPa to porcine skin and aortic skin after 7 days underwater, respectively. Especially, the EMTA/Zn2+ bioadhesive exhibits outstanding sealing performance in vitro with the high burst pressure of 525 mmHg (70 kPa) and 337.5 mmHg (45 kPa) to porcine skin and aortic skin, respectively. Moreover, the EMTA/Zn2+ bioadhesive not only has outstanding hemocompatibility and good biodegradability but also exhibits excellent cytocompatibility and antibacterial properties. Notably, the EMTA/Zn2+ bioadhesive has remarkable instant sealing hemostatic ability for hemorrhaging liver in vivo. Therefore, the prepared plant oil-based EMTA/Zn2+ bioadhesive can serve as a charming alternative candidate for instant sealing hemostasis in clinical applications, especially in traumatic internal organs and arterial bleeding.


Subject(s)
Hemostasis , Animals , Swine , Hemostasis/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Zinc/chemistry , Zinc/pharmacology , Mice , Humans , Hemorrhage/drug therapy , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tannins/chemistry , Tannins/pharmacology , Methacrylates/chemistry , Methacrylates/pharmacology
2.
Macromol Biosci ; 24(5): e2300469, 2024 May.
Article in English | MEDLINE | ID: mdl-38197551

ABSTRACT

In order to achieve long-term and controllable release of anti-tumor drugs at specific sites, temperature/pH responsive nanoparticles encapsulating 5-fluorouracil and methotrexate in situ are prepared through dispersion photopolymerization under green LED irradiation. The physicochemical properties of nanoparticles are characterized by scanning electron microscopy, Fourier transform infrared, dynamic light scattering, thermogravimetric/differential scanning calorimetry, and X-ray diffraction. In vitro drug release at different temperatures and pH values is examined to ascertain the release pattern of two drugs, which can be well described by Korsmeyer-Peppas kinetic model. The cytotoxicity evaluation illustrates that the tumor cells could be more effectively killed by the drug-loaded nanoparticles, and the improved therapeutic effect is attributed to the controllable and sustainable drug release as well as the enhanced cellular uptake. The blood safety and good biocompatibility of nanoparticles are further confirmed by hemolysis assay, indicating the prepared nanoparticles are potential candidates for effective tumor treatment.


Subject(s)
Fluorouracil , Methotrexate , Nanoparticles , Polymethyl Methacrylate , Temperature , Fluorouracil/pharmacology , Fluorouracil/chemistry , Methotrexate/pharmacology , Methotrexate/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Humans , Polymethyl Methacrylate/chemistry , Polymerization , Hemolysis/drug effects , Drug Liberation , Drug Carriers/chemistry , Animals , X-Ray Diffraction , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/chemistry , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL