Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Eur J Ophthalmol ; : 11206721241249224, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656196

ABSTRACT

Kabuki syndrome (KS) is a rare congenital disorder with distinctive characteristics. Herein, we describe a KS patient carrying a novel mutation in the KMT2D gene, c.11785C > T (p.Gln3929*). The patient presented with typical eyelid deformities, including eversion of the lateral lower eyelids, long palpebral fissures, hypertelorism, and medial epicanthus. Orbital computed tomography revealed orbital bone malformation with temporally and inferiorly displaced zygomatic bone. The bilateral orbits were shallow with an enlarged angle between the lateral walls. Zygomatic and maxillary bone dysplasia were also observed. Orbital bone anomalies are thought to be one of the characteristics of KS.

2.
Ecotoxicol Environ Saf ; 272: 116075, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325273

ABSTRACT

Although animal studies have shown the reproductive toxicity of vanadium, less is known about its effects on semen quality in humans. Among 1135 healthy men who were screened as potential semen donors, we investigated the relationships of semen quality with urinary and seminal plasma vanadium levels via inductively coupled plasma-mass spectrometry (ICP-MS). Spearman rank correlation tests and linear regression models were used to assess the correlations between average urinary and within-individual pooled seminal plasma vanadium concentrations (n = 1135). We utilized linear mixed-effects models to evaluate the associations of urinary and seminal plasma vanadium levels (n = 1135) with repeated sperm quality parameters (n = 5576). Seminal plasma vanadium concentrations were not significantly correlated with urinary vanadium concentrations (r = 0.03). After adjusting for possible confounders, we observed inverse relationships of within-individual pooled seminal plasma vanadium levels with total count, semen volume, and sperm concentration (all P values for trend < 0.05). Specifically, subjects in the highest (vs. lowest) tertile of seminal plasma vanadium concentrations had - 11.3% (-16.4%, -5.9%), - 11.1% (-19.1%, -2.4%), and - 20.9% (-29.0%, -11.8%) lower sperm volume, concentration, and total count, respectively; moreover, urinary vanadium levels appeared to be negatively associated with sperm motility. These relationships showed monotonically decreasing dose-response patterns in the restricted cubic spline analyses. Our results demonstrated a poor correlation between urinary and seminal plasma levels of vanadium, and elevated vanadium concentrations in urine and seminal plasma may be adversely related to male semen quality.


Subject(s)
Semen Analysis , Semen , Animals , Male , Humans , Semen/chemistry , Vanadium/toxicity , Vanadium/analysis , Sperm Motility , Sperm Count , Spermatozoa/physiology
3.
J Adolesc Health ; 74(5): 892-899, 2024 May.
Article in English | MEDLINE | ID: mdl-38323964

ABSTRACT

PURPOSE: To explore the impact of COVID-19 pandemic lockdown (CoPL) on body mass index (BMI) and physical fitness among college students. METHODS: Two one-year cohorts, one with no pandemic lockdown (NoPL) exposure and one with CoPL exposure, were included. Baseline measurements were performed in October 2018 (NoPL) and October 2019 (CoPL), and follow-up data were collected one year later. Participants were divided into "deterioration", "no-change", and "improvement" groups based on their quartile distribution of one-year differences (follow-up-baseline) for lower 25%, middle 50%, and upper 25%. Baseline-category logit regression models were used to determine the odds ratios of deterioration and improvement in BMI and physical fitness, with "no-change" used as baseline. RESULTS: A total of 2,594 and 2,525 students were included in NoPL and CoPL cohorts, respectively. CoPL was associated with higher odds for deterioration in BMI (male), explosive strength, upper-limb muscle strength, abdominal muscle strength, and cardiorespiratory fitness, but lower odds for deterioration in BMI (female) and flexibility. CoPL was associated with lower odds for improvement in BMI (male), explosive strength, lower-limb and upper-limb muscle strength, and cardiorespiratory fitness, but higher odds for improvement in BMI (female) and flexibility. DISCUSSION: Not all dimensions of health outcomes were negatively impacted by the lockdown, as deterioration in BMI in males, muscle strength, and cardiorespiratory fitness following the CoPL were more than that in the absence of the lockdown, while deterioration in BMI in females and flexibility were less than that in the absence of the lockdown.


Subject(s)
COVID-19 , Pandemics , Humans , Male , Female , Body Mass Index , Communicable Disease Control , Physical Fitness/physiology , Students
4.
Small ; 20(3): e2304752, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691019

ABSTRACT

The patient-centered healthcare requires timely disease diagnosis and prognostic assessment, calling for individualized physiological monitoring. To assess the postoperative hemodynamic status of patients, implantable blood flow monitoring devices are highly expected to deliver real time, long-term, sensitive, and reliable hemodynamic signals, which can accurately reflect multiple physiological conditions. Herein, an implantable and unconstrained vascular electronic system based on a piezoelectric sensor immobilized is presented by a "growable" sheath around continuously growing arterial vessels for real-timely and wirelessly monitoring of hemodynamics. The piezoelectric sensor made of circumferentially aligned polyvinylidene fluoride nanofibers around pulsating artery can sensitively perceive mechanical signals, and the growable sheath bioinspired by the structure and function of leaf sheath has elasticity and conformal shape adaptive to the dynamically growing arterial vessels to avoid growth constriction. With this integrated and smart design, long-term, wireless, and sensitive monitoring of hemodynamics are achieved and demonstrated in rats and rabbits. It provides a simple and versatile strategy for designing implantable sensors in a less invasive way.


Subject(s)
Electronics , Hemodynamics , Humans , Animals , Rabbits , Rats , Prostheses and Implants , Monitoring, Physiologic
5.
J Transl Med ; 21(1): 838, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990271

ABSTRACT

BACKGROUND: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS: Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS: LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION: LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Fructose-Bisphosphate Aldolase/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Gemcitabine , Cell Proliferation , Glycolysis , Phenotype , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
6.
J Agric Food Chem ; 71(42): 15445-15455, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37815876

ABSTRACT

Flesh color is a significant characteristic of watermelon. Although various flesh-color genes have been identified, the inheritance and molecular basis of the orange flesh trait remain relatively unexplored. In the present study, the genetic analysis of six generations derived from W1-1 (red flesh) and W1-61 (orange flesh) revealed that the orange flesh color trait was regulated by a single recessive gene, Clorf (orange flesh). Bulk segregant analysis (BSA) locked the range to ∼4.66 Mb, and initial mapping situated the Clorf locus within a 688.35-kb region of watermelon chromosome 10. Another 1,026 F2 plants narrowed the Clorf locus to a 304.62-kb region containing 32 candidate genes. Subsequently, genome sequence variations in this 304.62-kb region were extracted for in silico BSA strategy among 11 resequenced lines (one orange flesh and ten nonorange flesh) and finally narrowed the Clorf locus into an 82.51-kb region containing nine candidate genes. Sequence variation analysis of coding regions and gene expression levels supports Cla97C10G200950 as the most possible candidate for Clorf, which encodes carotenoid isomerase (Crtiso). This study provides a genetic resource for investigating the orange flesh color of watermelon, with Clorf malfunction resulting in low lycopene accumulation and, thus, orange flesh.


Subject(s)
Citrullus , Citrullus/genetics , Citrullus/metabolism , Carotenoids/metabolism , Phenotype , Lycopene/metabolism , Isomerases/genetics , Isomerases/metabolism
7.
Orthop Surg ; 15(12): 3015-3025, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37803912

ABSTRACT

The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , MicroRNAs , Nucleus Pulposus , Osteoarthritis , Humans , Intervertebral Disc Degeneration/pathology , Osteoarthritis/metabolism , Nucleus Pulposus/metabolism , Cell Differentiation , Extracellular Matrix/metabolism , Apoptosis , Intervertebral Disc/metabolism , MicroRNAs/metabolism
8.
Zhonghua Nan Ke Xue ; 29(2): 99-105, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-37847080

ABSTRACT

OBJECTIVE: To investigate whether mouse epididymis-specific mRNAs Adam7 and Crisp1 can be delivered into N2a and TM4 cells, and to provide an experimental basis for exploring the function of epididymal mRNAs. METHODS: Using RT-PCR, we detected the presence of epididymis-specific genes (Adam7, Crisp1, Defb22, Wfdc2, and Wfdc9) in the testis, epididymis, epididymosome and sperm of adult male BALB/c mice as well as in the human testis, seminal vesicles and sperm. We isolated epididymosomes of BALB/c mice by low-speed centrifugation, filtration and ultracentrifugation, fluorescently labeled them by PKH26, co-incubated them for 1 hour with the N2a and TM4 cells after 24 hours of starvation culture, and observed whether they were fused with the N2a and TM4 cells and ingested using the epididymosomes without PKH26 labeling, PKH26 dye without epididymosomes, and non- epididymosome or -PKH26 dye as controls. Then we detected the epididymis-specific genes in the N2a and TM4 cells after 1-hour co-incubation by RT-PCR. RESULTS: Adam7 and Crisp1 were present in the mouse epididymis, epididymosomes and sperm, and in the human seminal vesicles and sperm as well, but not in the testes of either the mice or men. PKH26 and Hoechst33258 fluorescence double-labeling showed that the mouse epididymosomes were fused with the N2a and TM4 cells and ingested; RT-PCR revealed the mRNAs of Adam7 and Crisp1 in the N2a and TM4 cells after 1-hour co-incubation; and Western blot exhibited the CRISP1 protein in the N2a and TM4 cells incubated with epididymosomes. CONCLUSION: Epididymosomes can deliver epididymis-specific mRNAs Adam7 and Crisp1 into N2a and TM4 cells, where Crisp1 may be translated into proteins, though their function and significance need to be further studied.


Subject(s)
Epididymis , Testis , Male , Humans , Mice , Animals , Testis/metabolism , Sperm Maturation/genetics , Semen , Spermatozoa/metabolism , WAP Four-Disulfide Core Domain Protein 2/metabolism
9.
Medicine (Baltimore) ; 102(34): e34527, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653749

ABSTRACT

BACKGROUND: Transarterial chemoembolization (TACE) consists of conventional TACE (cTACE) and drug-eluting beads TACE (DEB-TACE). The benefits of the 2 treatments remain controversial. We conduct this meta-analysis to assess the efficacy and safety of the 2 methods for the patients with unresectable hepatocellular carcinoma. METHODS: In order to get a sound conclusion, we did thorough search all relevant studies with clear and stringent keyword criteria on the main databases. Objective tumor response rate, overall survival (OS) rate and adverse events were calculated and analyzed by RevMan 5.3 software. The random-effects or fixed-effects model was applied to pool the estimates according to Cochran Q test and I2 statistics. RESULTS: Twenty-four studies involving 2987 patients were eligible. DEB-TACE significantly improved objective tumor response rate (OR) (risk ratio [RR] = 1.27, 95% confidence interval [CI] [1.08, 1.48]; P = .003). While as for 1-year, 2-year, 3-year, 5-year OS rates, there were no evidences to indicate that DEB-TACE was significantly better than cTACE (RR = 1.05, 95% CI [0.99, 1.11]; P = .08), (RR = 1.02, 95% CI [0.93, 1.11]; P = .68), (RR = 0.92, 95% CI [0.77, 1.10]; P = .37), (RR = 0.92, 95% CI [0.47, 1.80]; P = .81), respectively. Adverse events rate (AE) was also similar in both groups (RR = 1.11, 95% CI [0.99,1.26]; P = .08). CONCLUSION: This meta-analysis demonstrates that DEB-TACE is not superior than cTACE regarding to OS and AE. However, DEB-TACE still be considered to provide a better objective tumor response rate for patients with unresectable hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Vascular Surgical Procedures , Databases, Factual
10.
Nat Commun ; 14(1): 5487, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679363

ABSTRACT

Pepper (Capsicum spp.) is one of the earliest cultivated crops and includes five domesticated species, C. annuum var. annuum, C. chinense, C. frutescens, C. baccatum var. pendulum and C. pubescens. Here, we report a pepper graph pan-genome and a genome variation map of 500 accessions from the five domesticated Capsicum species and close wild relatives. We identify highly differentiated genomic regions among the domesticated peppers that underlie their natural variations in flowering time, characteristic flavors, and unique resistances to biotic and abiotic stresses. Domestication sweeps detected in C. annuum var. annuum and C. baccatum var. pendulum are mostly different, and the common domestication traits, including fruit size, shape and pungency, are achieved mainly through the selection of distinct genomic regions between these two cultivated species. Introgressions from C. baccatum into C. chinense and C. frutescens are detected, including those providing genetic sources for various biotic and abiotic stress tolerances.


Subject(s)
Capsicum , Piper nigrum , Capsicum/genetics , Domestication , Vegetables , Fruit/genetics , Crops, Agricultural/genetics , Camphor , Menthol
11.
Diabetes Metab Syndr Obes ; 16: 2447-2456, 2023.
Article in English | MEDLINE | ID: mdl-37608851

ABSTRACT

Objective: To discuss the relationship between time in range (TIR) which is deprived of the FGMS and the risk of diabetic vascular complications and to provide a theoretical foundation for the clinical application of TIR and other FGMS-deprived indexes. Methods: Patients with T2DM who wore the FGMS sensor continuously were enrolled. Relevant indexes such as TIR, time below range (TBR), time above range (TAR), a standard deviation of blood glucose (SDBG), coefficient of variation of blood glucose (CV), and mean amplitude of glycemic excursion (MAGE) generated by the FGMS were recorded, and the risk of diabetic vascular complications were followed up for one year. The TIR was measured by continuous glucose monitoring at baseline, and patients were grouped according to TIR every 20%. Finally, the Cox proportional hazards regression model was used to estimate the association of different levels of TIR with different rates of diabetic vascular complications. Results: TIR was negatively correlated with HbA1C, CV, SDBG, and amplitude of glycemic excursion (MV), wherein, the lower the TIR, the higher the HbA1C, CV, SDBG, and MV. TIR in the diabetic microvascular complication was significantly lower than that in the non-microvascular complication group, and the difference was statistically significant. TIR <40% was identified as a risk factor for DN, DPN, and DR according to the risk assessment. The mean TAR in the DN group was significantly higher than that in the non-DN group. TAR, CV, SD, MAGE, and HbA1C in the DR group were significantly higher than those in the non-DR group. TAR, ABG, CV, SD, MAGE, and HbA1C in the DPN group were significantly higher than those in the non-DPN group. Conclusion: The relationships between the TIR and the prevalence and risk of diabetic vascular complications and the HbA1C may be negative. Other CGM-deprived indexes such as CV and MV should be integrated into glycemic control and diabetes complication prediction.

12.
J Vis Exp ; (198)2023 08 18.
Article in English | MEDLINE | ID: mdl-37607089

ABSTRACT

In basic experimental acupuncture research, rats are commonly used as laboratory animals. However, it is difficult for them to maintain a fixed posture. During electroacupuncture procedures, proper immobilization of rats is essential. Various methods of rat fixation are currently used, including anesthesia fixation, high-platform fixation, binding fixation, and fixation with a self-made rat coat. However, these methods have their limitations, which may affect the efficiency and operability of the experiment to some extent. This protocol introduces a method of suspending and fixing rats using rat clothes. Firstly, rats are clothed with rat jackets that match their body shape, taking advantage of their preference for darkness and burrowing. The needling operation can then be carried out after the rats have worn rat clothes. When suspended, the rats are relatively still, as their limbs cannot move. This fixation method offers not only economical and user-friendly benefits but also ensures a stable and reliable fixation of the rats in a comfortably relaxed position. It also effectively minimizes time consumption, experimental space, and manpower resources. Additionally, this method allows for the exposure of most acupoints used for acupuncture in rats. This article primarily concentrates on the device's composition, encompassing a specially designed rat jacket, an elevated fixation rack, and their connecting structures. Additionally, an illustrative example will be presented to demonstrate the application of the rat clothing-based suspension fixation method in rat electroacupuncture procedures.


Subject(s)
Acupuncture Therapy , Anesthesia , Animals , Rats , Acupuncture Points , Extremities , Histological Techniques , Suspensions
13.
Nat Commun ; 14(1): 4600, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524695

ABSTRACT

Neuropathy is a feature more frequently observed in pancreatic ductal adenocarcinoma (PDAC) than other tumors. Schwann cells, the most prevalent cell type in peripheral nerves, migrate toward tumor cells and associate with poor prognosis in PDAC. To unveil the effects of Schwann cells on the neuro-stroma niche, here we perform single-cell RNA-sequencing and microarray-based spatial transcriptome analysis of PDAC tissues. Results suggest that Schwann cells may drive tumor cells and cancer-associated fibroblasts (CAFs) to more malignant subtypes: basal-like and inflammatory CAFs (iCAFs), respectively. Moreover, in vitro and in vivo assays demonstrate that Schwann cells enhance the proliferation and migration of PDAC cells via Midkine signaling and promote the switch of CAFs to iCAFs via interleukin-1α. Culture of tumor cells and CAFs with Schwann cells conditioned medium accelerates PDAC progression. Thus, we reveal that Schwann cells induce malignant subtypes of tumor cells and CAFs in the PDAC milieu.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Schwann Cells/metabolism , Tumor Microenvironment/genetics , Cell Line, Tumor , Fibroblasts/metabolism , Pancreatic Neoplasms
14.
Front Neurosci ; 17: 1168962, 2023.
Article in English | MEDLINE | ID: mdl-37260841

ABSTRACT

Objective: To investigate the clinical efficacy and prognostic factors of transnasal endoscopic optic decompression in the treatment of traumatic optic neuropathy (TON). Methods: A retrospective analysis was performed on 13 TON patients in The Seventh Affiliated Hospital of Sun Yat-sen University and Shenzhen Eye Hospital in Shenzhen City (China) from June 2020 to April 2022. These patients had received transnasal endoscopic optic decompression, and hormonal and neurotrophic drugs were given after surgery. Visual acuity (VA) improvement was used as the criterion to judge clinical efficacy. Results: In a total of 13 patients, 13 injured eyes (12 men and 1 woman; mean age, 28.0 ± 11.8 years) received transnasal endoscopic optic decompression. After surgery, nine patients had improved VA, whereas four patients failed to show any improvement, resulting in a total effective rate of 69.2%. Of the six patients with no light perception preoperatively, three had effective results after the operation, giving an effective rate of 50.0%. Of the seven patients with residual light sensation preoperatively, six had effective results after the operation, giving an effective rate of 85.7%. Of the 10 patients operated on within 7 days after injury, seven had effective results, giving an effective rate of 70%. Of the three patients injured and operated on after 7 days, two had effective results, giving an effective rate of 66.7%. Conclusion: Transnasal endoscopic optic nerve decompression is an effective treatment method for TON. The presence of residual light perception and the timing of surgery within 7 days are crucial to the prognosis.

15.
Environ Geochem Health ; 45(8): 6585-6603, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37341891

ABSTRACT

Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.


Subject(s)
Lung Injury , Particulate Matter , Humans , Mice , Animals , Particulate Matter/toxicity , Lung Injury/chemically induced , Antioxidants/metabolism , Lung , Oxidative Stress , Inflammation/metabolism
16.
Polymers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242870

ABSTRACT

Membrane sensors have been widely used in various fields owing to their multifunctionality and cost-effectiveness. However, few studies have investigated frequency-tunable membrane sensors, which could enable versatility in the face of different device requirements while retaining high sensitivity, fast response times, and high accuracy. In this study, we propose a device comprising an asymmetric L-shaped membrane with tunable operating frequencies for microfabrication and mass sensing applications. The resonant frequency could be controlled by adjusting the membrane geometry. To fully understand the vibration characteristics of the asymmetric L-shaped membrane, the free vibrations of the membrane are first solved by a semi-analytical treatment combining domain decomposition and variable separation methods. The finite-element solutions confirmed the validity of the derived semi-analytical solutions. Parametric analysis results revealed that the fundamental natural frequency decreases monotonically with the increase in length or width of the membrane segment. Numerical examples revealed that the proposed model can be employed to identify suitable materials for membrane sensors with specific frequency requirements under a given set of L-shaped membrane geometries. The model can also achieve frequency matching by changing the length or width of membrane segments given a specified membrane material. Finally, performance sensitivity analyses for mass sensing were carried out, and the results showed that the performance sensitivity was up to 0.7 kHz/pg for polymer materials under certain conditions.

17.
Environ Pollut ; 331(Pt 1): 121755, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37142207

ABSTRACT

Adverse male reproduction caused by phthalate ester (PAE) exposure has been well documented in vivo. However, existing evidence from population studies remains inadequate to demonstrate the impact of PAE exposure on spermatogenesis and underlying mechanisms. Our present study aimed to explore the potential link between PAE exposure and sperm quality and the possible mediation by sperm mitochondrial and telomere in healthy male adults recruited from the Hubei Province Human Sperm Bank, China. Nine PAEs were determined in one pooled urine sample prepared from multiple collections during the spermatogenesis period from the same participant. Sperm telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined in sperm samples. The sperm concentration and count per quartile increment in mixture concentrations were -4.10 million/mL (-7.12, -1.08) and -13.52% (-21.62%, -4.59%), respectively. We found one quartile increase in PAE mixture concentrations to be marginally associated with sperm mtDNAcn (ß = 0.09, 95% CI: -0.01, 0.19). Mediation analysis showed that sperm mtDNAcn significantly explained 24.6% and 32.5% of the relationships of mono-2-ethylhexyl phthalate (MEHP) with sperm concentration and sperm count (ß = -0.44 million/mL, 95% CI: -0.82, -0.08; ß = -1.35, 95% CI: -2.54, -0.26, respectively). Our study provided a novel insight into the mixed effect of PAEs on adverse semen quality and the potential mediation role of sperm mtDNAcn.


Subject(s)
Phthalic Acids , Semen Analysis , Humans , Male , Adult , Semen , East Asian People , Environmental Exposure/analysis , Spermatozoa , Phthalic Acids/urine , DNA, Mitochondrial , China
18.
Environ Sci Technol ; 57(19): 7358-7369, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37144275

ABSTRACT

While exogenous metal/metalloid (metal) exposure has been associated with reduced human semen quality, no study has assessed the associations of exogenous metals in human spermatozoa with semen quality. Here, we developed a strategy to explore the associations between exogenous metals in spermatozoa at single-cell resolution and human semen quality among 84 men screened as sperm donors, who provided 266 semen samples within 90 days. A cellular atlas of exogenous metals at the single-cell level was created with mass cytometry (CyTOF) technology, which concurrently displayed 18 metals in more than 50 000 single sperm. Exogenous metals in spermatozoa at single-cell resolution were extremely heterogeneous and diverse. Further analysis using multivariable linear regression and linear mixed-effects models revealed that the heterogeneity and prevalence of the exogenous metals at single-cell resolution were associated with semen quality. The heterogeneity of lead (Pb), tin (Sn), yttrium (Y), and zirconium (Zr) was negatively associated with sperm concentration and count, while their prevalence showed positive associations. These findings revealed that the heterogeneous properties of exogenous metals in spermatozoa were associated with human semen quality, highlighting the importance of assessing exogenous metals in spermatozoa at single-cell resolution to evaluate male reproductive health risk precisely.


Subject(s)
Semen Analysis , Semen , Humans , Male , Spermatozoa , Sperm Count , Metals , Sperm Motility
19.
Curr Issues Mol Biol ; 45(4): 2832-2846, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37185709

ABSTRACT

The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.

20.
Cancer Immunol Immunother ; 72(8): 2701-2716, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37097516

ABSTRACT

BACKGROUND: Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS: Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS: Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS: Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Immune Checkpoint Proteins , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Prognosis , Immunoglobulin Domains , Liver Neoplasms/pathology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...