Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Genes Nutr ; 19(1): 17, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182019

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver ailment that can lead to serious conditions such as cirrhosis and hepatocellular carcinoma. Hepatic Nogo-B regulates glucose and lipid metabolism, and its inhibition has been shown to be protective against metabolic syndrome. Increasing evidence suggests that imbalances in the gut microbiota (GM) and lipid metabolism disorders are significant contributors to NAFLD progression. Nevertheless, it is not yet known whether Nogo-B can affect NAFLD by influencing the gut microbiota and metabolites. Hence, the aim of the present study was to characterize this process and explore its possible underlying mechanisms. METHODS: A NAFLD model was constructed by administering a high-fat diet (HFD) to Nogo-B-/- and WT mice from the same litter, and body weight was measured weekly in each group. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to assess blood glucose levels. At the end of the 12-week period, samples of serum, liver, and intestinal contents were collected and used for serum biochemical marker and inflammatory factor detection; pathology evaluation; and gut microbiome and metabolomics analysis. Spearman's correlation analysis was performed to determine possible correlations between differential gut microbiota and differential serum metabolites between groups. RESULTS: Nogo-B deficiency attenuated the effects of the HFD, including weight gain, liver weight gain, impaired glucose tolerance, hepatic steatosis, elevated serum lipid biochemicals levels, and liver function. Nogo-B deficiency suppressed M1 polarization and promoted M2 polarization, thus inhibiting inflammatory responses. Furthermore, Nogo-B-/--HFD-fed mice presented increased gut microbiota richness and diversity, decreased Firmicutes/Bacteroidota (F/B) ratios, and altered serum metabolites compared with those of WT-HFD-fed mice. During analysis, several differential gut microbiota, including Lachnoclostridium, Harryflintia, Odoribacter, UCG-009, and unclassified_f_Butyricoccaceae, were screened between groups. These microbiota were found to be positively correlated with upregulated purine metabolism and bile acid metabolites in Nogo-B deficiency, while they were negatively correlated with downregulated corticosterone and tricarboxylic acid cyclic metabolites in Nogo-B deficiency. CONCLUSION: Nogo-B deficiency delayed NAFLD progression, as demonstrated by reduced hepatocellular lipid accumulation, attenuated inflammation and liver injury, and ameliorated gut microbiota dysbiosis and metabolic disorders. Importantly, Odoribacter was strongly positively correlated with ALB and taurodeoxycholic acid, suggesting that it played a considerable role in the influence of Nogo-B on the progression of NAFLD, a specific feature of NAFLD in Nogo-B-/- mice. The regulation of bile acid metabolism by the gut microbiota may be a potential target for Nogo-B deficiency to ameliorate NAFLD.

2.
ACS Nano ; 18(36): 25155-25169, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39189792

ABSTRACT

Steviol glycosides (SGs) are a class of high-potency noncalorie natural sweeteners made up of a common diterpenoid core and varying glycans. Thus, the diversity of glycans in composition, linkage, and isomerism results in the tremendous structural complexity of the SG family, which poses challenges for the precise identification and leads to the fact that SGs are frequently used in mixtures and their variances in biological activity remain largely unexplored. Here we show that a wild-type aerolysin nanopore can detect and discriminate diverse SG species through the modulable electro-osmotic flow effect at varied applied voltages. At low voltages, the neutral SG molecule was drawn and stuck in the pore entrance due to an energy barrier around R220 sites. The ensuing binding events enable the identification of the majority of SG species. Increasing the voltage can break the barrier and cause translocation events, allowing for the unambiguous identification of several pairs of SGs differing by only one hydroxyl group through recognition accumulation from multiple sensing regions and sites. Based on nanopore data of 15 SGs, a deep learning-based artificial intelligence (AI) model was created to process the individual blockage events, achieving the rapid, automated, and precise single-molecule identification and quantification of SGs in real samples. This work highlights the value of nanopore sensing for precise structural analysis of complex glycans-containing glycosides, as well as the potential for sensitive and rapid quality assurance analysis of glycoside products with the use of AI.


Subject(s)
Deep Learning , Diterpenes, Kaurane , Nanopores , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/analysis , Glucosides/chemistry , Glucosides/analysis , Glycosides/chemistry , Glycosides/analysis
3.
Inflamm Res ; 73(9): 1435-1444, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39020021

ABSTRACT

OBJECTIVE: A coagulation factor called fibrinogen is produced by the liver and is proteolyzed by thrombin to become fibrin. The latest studies have revealed that fibrin(ogen) palys an essential role in the regulation of cardiovascular disease. Understanding the relationship and mechanism between fibrin(ogen) and cardiovascular disease is of great significance for maintaining overall health. The objective of this review is to discuss the specific involvement and underlying mechanisms of fibrin(ogen) in cardiovascular disease. METHODS: A review was conducted using the PubMed database to identify and analyze the emerging role of fibrinogen in cardiovascular disease. RESULTS: The literature review revealed that fibrin(ogen) plays a pivotal role in maintaining cardiovascular disease and are involved in the pathogenesis of cardiovascular disease. Fibrin(ogen) mainly influence various pathophysiological processes, such as participating in thrombosis formation, stimulating the inflammatory response, and other molecular pathways. CONCLUSION: This review focuses on the involvement of fibrin(ogen) in cardiovascular disease, with a particular emphasis on the main functions and underlying mechanisms by which fibrin(ogen) influence the pathogenesis and progression of these conditions. This review underscores the potential of fibrin(ogen) as therapeutic targets in managing cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Fibrinogen , Humans , Cardiovascular Diseases/metabolism , Animals , Fibrinogen/metabolism , Inflammation/metabolism , Thrombosis/metabolism
4.
Apoptosis ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066845

ABSTRACT

Anoikis-Related Genes (ARGs) lead to the organism manifesting resistance to anoikis and are associated with unfavorable prognostic outcomes across various malignancies.Therefore, it is crucial to identify the pivotal target genes related to anoikis in HCC .We found that ARGs were significantly correlated with prognosis and immune responses in HCC. The core gene, SPP1, notably promoted anoikis resistance and metastasis in HCC through both in vivo and in vitro studies. The PI3K-Akt-mTOR pathway played a critical role in anoikis suppression within HCC contexts. Our research unveiled SPP1's role in enhancing PKCα phosphorylation, which in turn activated the PI3K-Akt-mTOR cascade. Additionally, SPP1 was identified as a key regulator of MDSCs and Tregs migration, directly affecting their immunosuppressive capabilities.These findings indicate that in HCC, SPP1 promoted anoikis resistance and facilitated immune evasion by modulating MDSCs and Tregs.

5.
ACS Nano ; 18(19): 12412-12426, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38693619

ABSTRACT

Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.


Subject(s)
Bacterial Toxins , Nanopores , Polysaccharides , Pore Forming Cytotoxic Proteins , Polysaccharides/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Molecular Docking Simulation , Mutation
6.
Front Med ; 18(3): 499-515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806989

ABSTRACT

Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-ß (TGF-ß)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-ß-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.


Subject(s)
Axl Receptor Tyrosine Kinase , Fibrosis , Myocardial Infarction , Proto-Oncogene Proteins , RNA-Binding Proteins , Receptor Protein-Tyrosine Kinases , Animals , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Male , Mice, Inbred C57BL , Signal Transduction , Myocardium/pathology , Myocardium/metabolism , Transforming Growth Factor beta/metabolism , Ventricular Remodeling/genetics , Disease Models, Animal , Adenosine/analogs & derivatives , Adenosine/metabolism , Fibroblasts/metabolism
7.
ACS Omega ; 9(2): 2606-2614, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250387

ABSTRACT

In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.

8.
Adv Mater ; 36(6): e2310427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012003

ABSTRACT

Here, a facile fabrication approach for the high-quality 1D perovskite triangular nanowire (TNW) array synthesis through space-confined effect is reported. A soft stamp containing 1D triangular linear array pattern is used to confine the MAPbX3 solution and to guide the growth of the nanowires along the prescribed direction with good crystallinity. The further constructed photodetectors based on the obtained MAPbI3 TNWs exhibit superior photoresponse properties with a responsivity of (125.2 ± 2.5) A W-1 and detectivity of (2.8 ± 0.8) × 1013 Jones at the wavelength of 650 nm. This excellent performance is attributed to the highly crystalline TNW with optical anisotropy and a small asymptotic height, which reduces the probability of the photon reflection and promotes the carrier transport. More interestingly, the increased surface area of the triangular device can present superior flexibility after a couple of thousands of bending cycles. Furthermore, by fabricating 7 × 7 photodetector arrays, the potential image sensor application is demonstrated. The perovskite nanowire fabrication approach is scalable and compatible with current semiconductor manufacturing, which indicates their great potential in broad applications.

9.
Heliyon ; 9(10): e20850, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867830

ABSTRACT

Background and aims: Hepatitis B virus (HBV) is a common cause of hepatocellular carcinoma (HCC) in China, and this study aimed to identify high-risk factors for overall survival and develop a nomogram prediction model. Methods: In the present retrospective cohort study, patients with HBV-associated HCC diagnosed from January 2009 to December 2018 were enrolled. Their clinical characteristics and time-to-event information were retrieved from electronic medical records. The zero time was the date of HCC diagnosis, and the endpoint was death or liver transplantation. Multivariable COX proportional hazard regression was used to screen independent risk factors for overall survival; then a nomogram model was developed to predict the survival probability of HCC patients. Results: A total of 1723 patients were enrolled, with 82.7 % male and a median age of 54.0 years. During a median follow-up time of 41.3 months, 672 cases (39.0 %) died. Age ≥60 years (HR = 1.209), Male (HR = 1.293), ALB <35 g/L (HR = 1.491), AST ≥80 U/L (HR = 1.818); AFP 20-400 ng/mL (HR = 2.284), AFP ≥400 ng/mL (HR = 2.746); LSM 9-22 kPa (HR = 2.266), LSM ≥22 kPa (HR = 4.326); BCLC stage B/C (HR = 4.079) and BCLC stage D (HR = 16.830) were the independent high-risk factors associated with HCC survival. A prognostic nomogram with a consistency index of 0.842 (95 % CI: 0.827-0.858) was developed. The calibration curve for long-term survival rate fitted well. Conclusions: This study identified independent risk factors affecting the survival of patients with HBV-associated HCC and constructed a predictive nomogram model, which can individually predict the overall survival and has good clinical application value.

10.
Front Genet ; 14: 1224015, 2023.
Article in English | MEDLINE | ID: mdl-37680198

ABSTRACT

The dirigent (DIR) gene is a key player in environmental stress response and has been identified in many multidimensional tube plant species. However, there are few studies on the StDIR gene in potato. In this study, we used genome-wide identification to identify 31 StDIR genes in potato. Among the 12 potato chromosomes, the StDIR gene was distributed on 11 chromosomes, among which the third chromosome did not have a family member, while the tenth chromosome had the most members with 11 members. 22 of the 31 StDIRs had a classical DIR gene structure, with one exon and no intron. The conserved DIR domain accounts for most of the proteins in the 27 StDIRs. The structure of the StDIR gene was analyzed and ten different motifs were detected. The StDIR gene was divided into three groups according to its phylogenetic relationship, and 22 duplicate genes were identified. In addition, four kinds of cis-acting elements were detected in all 31 StDIR promoter regions, most of which were associated with biotic and abiotic stress. The findings demonstrated that the StDIR gene exhibited specific responses to cold stress, salt stress, ABA, and drought stress. This study provides new candidate genes for improving potato's resistance to stress.

12.
Article in English | MEDLINE | ID: mdl-37548549

ABSTRACT

Aims: Myocardial ischemia-reperfusion (I/R) injury facilitates cardiomyocyte death and endangers human health. N6-methyladenosine (m6A) methylation plays a critical role in cardiovascular diseases. The m6A reader YTHDF2 identifies m6A-modified RNA and promotes target RNA degradation. Hence, we hypothesized that YTHDF2 affects I/R injury by regulating RNA stability. Results: Both messenger RNA (mRNA) and protein levels of YTHDF2 were upregulated in I/R mice and hypoxia-reoxygenation (H/R)-induced cardiomyocytes. Silencing endogenous YTHDF2 abrogated cardiac dysfunction and lowered the infarct size in I/R mice, and the forced expression of YTHDF2 aggravated these adverse pathological processes. Consistently, the protective effect of silencing YTHDF2 occurred in cardiomyocytes exposed to H/R and erastin. Further, RNA-Seq and RNA-binding protein immunoprecipitation (RIP) revealed that YTHDF2 recognized the m6A modification sites of the ferroptosis-related gene solute carrier family 7 member 11 (SLC7A11) mRNA to promote its degradation both in vivo and in vitro. Inhibition of SLC7A11 impaired cardiac function, increased infarct size, and the release of lactate dehydrogenase (LDH) in I/R mice after silencing YTHDF2. The beneficial effects of si-YTHDF2 on H/R injury were reversed by co-transfection with SLC7A11-specific siRNA (si-SLC7A11), which substantially exacerbated ferroptosis and the production of reactive oxygen species. Innovation and Conclusion: The cardioprotective effects of silencing YTHDF2 are accomplished by increasing SLC7A11 stability and expression, reducing ferroptosis, and providing novel potential therapeutic targets for treating ischemic cardiac diseases.

13.
Anal Chem ; 95(19): 7761-7769, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37140051

ABSTRACT

Protein methylation is the smallest possible yet vitally important post-translational modification (PTM). This small and chemically inert addition in proteins makes the analysis of methylation more challenging, thus calling for an efficient tool for the sake of recognition and detection. Herein, we present a nanofluidic electric sensing device based on a functionalized nanochannel that was constructed by introducing monotriazole-containing p-sulfonatocalix[4]arene (TSC) into a single asymmetric polymeric nanochannel via click chemistry. The device can selectively detect lysine methylpeptides with subpicomole sensitivity, distinguish between different lysine methylation states, and monitor the lysine methylation process by methyltransferase at the peptide level in real time. The introduced TSC molecule, with its confined asymmetric configuration, presents the remarkable ability to selectively bind to lysine methylpeptides, which, coupled with the release of the complexed Cu ions, allows the device to transform the molecular-level recognition to the discernible change in ionic current of the nanofluidic electric device, thus enabling detection. This work could serve as a stepping stone to the development of a new methyltransferase assay and the chemical that specifically targets lysine methylation in PTM proteomics.


Subject(s)
Lysine , Proteins , Methylation , Lysine/metabolism , Proteins/metabolism , Protein Processing, Post-Translational , Methyltransferases/metabolism
14.
Nat Commun ; 14(1): 1737, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977665

ABSTRACT

Structural complexity of glycans derived from the diversities in composition, linage, configuration, and branching considerably complicates structural analysis. Nanopore-based single-molecule sensing offers the potential to elucidate glycan structure and even sequence glycan. However, the small molecular size and low charge density of glycans have restricted direct nanopore detection of glycan. Here we show that glycan sensing can be achieved using a wild-type aerolysin nanopore by introducing a facile glycan derivatization strategy. The glycan molecule can induce impressive current blockages when moving through the nanopore after being connected with an aromatic group-containing tag (plus a carrier group for the neutral glycan). The obtained nanopore data permit the identification of glycan regio- and stereoisomers, glycans with variable monosaccharide numbers, and distinct branched glycans, either independently or with the use of machine learning methods. The presented nanopore sensing strategy for glycans paves the way towards nanopore glycan profiling and potentially sequencing.


Subject(s)
Nanopores , Polysaccharides/chemistry
15.
Front Pharmacol ; 14: 1071709, 2023.
Article in English | MEDLINE | ID: mdl-36874016

ABSTRACT

Background: Drug-induced liver injury (DILI) is a potentially serious adverse drug reaction. Due to the lack of definite etiology, specific clinical manifestations, and diagnostic methods, its prediction and diagnosis are challenging. Elderly individuals are deemed to be at high risk for DILI due to abnormal pharmacokinetics, aging tissue repair function, comorbidities, and taking multiple drugs. This study aimed to identify the clinical characteristics and explore the risk factors associated with the severity of illness in elderly patients with DILI. Methods: In the present study, the clinical characteristics at the time of liver biopsy of consecutive patients with biopsy-proven DILI who presented at our hospital from June 2005 to September 2022 were evaluated. Hepatic inflammation and fibrosis were assessed according to the Scheuer scoring system. The presence of autoimmunity was considered if IgG level >1.1 × ULN (1826 mg/dL), or high titer (>1:80) of ANA, or SMA. Results: In total, 441 patients were enrolled, and the median age was 63.3 years (IQR, 61.0-66.0); 122 (27.7%), 195 (44.2%), or 124 (28.1%) were classified as having minor, moderate, or severe hepatic inflammation, respectively; and 188 (42.6%), 210 (47.6%) or 43 (9.8%) patients presented minor, significant fibrosis or cirrhosis, respectively. Female sex (73.5%) and the cholestatic pattern (47.6%) were dominant in elderly DILI patients. Autoimmunity existed in 201 patients (45.6%). Comorbidities were not directly associated with the severity of DILI. PLT (OR: 0.994, 95% CI: 0.991-0.997; p < 0.001), AST (OR: 1.001, 95% CI: 1.000-1.003, p = 0.012), TBIL (OR: 1.006, 95% CI: 1.003-1.010, p < 0.001), and autoimmunity (OR: 1.831, 95% CI: 1.258-2.672, p = 0.002) were associated with the degree of hepatic inflammation. Meanwhile, PLT (OR: 0.990, 95% CI: 0.986-0.993, p < 0.001), TBIL (OR: 1.004, 95% CI: 1.000-1.007, p = 0.028), age (OR: 1.123, 95% CI: 1.067-1.183, p < 0.001), and autoimmunity (OR: 1.760, 95% CI: 1.191-2.608, p = 0.005) were associated with the stage of hepatic fibrosis. Conclusion: This study revealed that the presence of autoimmunity represents a more serious illness state of DILI, deserving more intensive monitoring and progressive treatment.

16.
Mol Nutr Food Res ; 67(7): e2101052, 2023 04.
Article in English | MEDLINE | ID: mdl-36738079

ABSTRACT

OBJECTIVE: To determine the mechanism of oxidative stress mediated by N6-methyladenosine (m6A) methylation contributing to high fat diet-induced reproductive dysfunction. RESULTS: In vivo, compared with those in the Control group, the sperm count and sperm motility decrease significantly; the testosterone, luteinizing hormone levels, hyaluronidase, acrosomal enzyme levels, and total antioxidant capacity decrease significantly; malondialdehyde increases significantly in the DIO and DIO-R groups. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1), and NAD(P)H quinone dehydrogenase 1 (NQO1) decreases significantly in the DIO and DIO-R groups; m6A levels in testis tissue in the DIO and DIO-R groups increase; the enrichment of m6A-modified Nrf2 mRNA in testis in the DIO group and DIO-R group increases significantly. Also the m6A regulatory proteins increase significantly in the DIO group and DIO-R group. In vitro, compared to palmitic acid treated cells, the reactive oxygen species (ROS) level significantly decreases in STM2457, S-Adenosylhomocysteine treated cells and YTHDC2, YTHDF2 gene silence cells; however, Nrf2 expression increases in all treated cells. In addition, m6A expression decreases. CONCLUSIONS: Oxidative stress mediates by methylation of m6A may contribute to high fat diet-induced male reproductive dysfunction.


Subject(s)
Diet, High-Fat , NF-E2-Related Factor 2 , Male , Humans , Diet, High-Fat/adverse effects , Methylation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sperm Motility , Semen/metabolism , Oxidative Stress
17.
Transl Res ; 257: 30-42, 2023 07.
Article in English | MEDLINE | ID: mdl-36775059

ABSTRACT

Cardiac fibrosis is a common pathological change in the development of heart disease. Circular RNA (circRNA) has been shown to be related to the occurrence and development of various cardiovascular diseases. This study aimed to evaluate the effects and potential mechanisms of circHelz in cardiac fibrosis. Knockdown of circHelz alleviated cardiac fibrosis and myocardial fibroblast activation induced by myocardial infarction (MI) or angiotensin II (AngII) in vivo and transforming growth factor-ß (TGF-ß) in vitro. Overexpression of circHelz exacerbated cell proliferation and differentiation. Mechanistically, nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) was found to act as a transcriptional activator to upregulate the expression of circHelz. The increased circHelz was demonstrated to bind to Yes-associated protein (YAP) and facilitate its localization in the nucleus to promote cell proliferation and growth. Moreover, silencing YAP1 reversed the detrimental effects caused by circHelz in vitro, as indicated by the observed decreases in cell viability, fibrotic marker expression levels, proliferation and migration. Collectively, the protective effect of circHelz knockdown against cardiac fibrosis injury is accomplished by inhibiting the nuclear translocation of YAP1. Thus, circHelz may be a novel target for the prevention and treatment of cardiovascular disease.


Subject(s)
Myocardial Infarction , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Myocardium/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Fibrosis , Cell Differentiation , Transcription Factors/genetics , Transcription Factors/metabolism , Fibroblasts/pathology , Transforming Growth Factor beta1/metabolism
18.
RSC Adv ; 12(54): 34892-34903, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540264

ABSTRACT

Circulating tumor cells (CTCs) released from the primary tumor to peripheral blood are promising targets for liquid biopsies. Their biological information is vital for early cancer detection, efficacy assessment, and prognostic monitoring. Despite the tremendous clinical applications of CTCs, development of effective separation techniques are still demanding. Traditional separation methods usually use batch processing for enrichment, which inevitably destroy cell integrity and affect the complete information acquisition. Considering the rarity and heterogeneity of CTCs, it is urgent to develop effective separation methods. Microfluidic chips with precise fluid control at the micron level are promising devices for CTC separation. Their further combination with micro-/nanostructure arrays adds more biomolecule binding sites and exhibit unique fluid barrier effect, which significantly improve the CTC capture efficiency, purity, and sensitivity. This review summarized the recent advances in micro-/nanostructure array integrated microfluidic devices for CTC separation, including microrods, nanowires, and 3D micro-/nanostructures. The mechanisms by which these structures contribute to improved capture efficiency are discussed. Two major categories of separation methods, based on the physical and biological properties of CTCs, are discussed separately. Physical separation includes the design and preparation of micro-/nanostructure arrays, while chemical separation additionally involves the selection and modification of specific capture probes. These emerging technologies are expected to become powerful tools for disease diagnosis in the future.

19.
Molecules ; 27(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807363

ABSTRACT

With the rapid development of communication technology in civil and military fields, the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle material with superior magnetic properties, high Snoek's cut-off frequency, saturation magnetization and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promising absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of morphological structure design and multi-component material composite are utilized to improve the microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave absorbing materials have been widely studied in microwave absorption. In this review, through the summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing properties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future development direction of Fe-based absorbing materials is also prospected, providing a reference for the research and development of efficient electromagnetic wave absorbing materials with strong absorption performance, frequency bandwidth, light weight and thin thickness.

20.
Molecules ; 27(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897893

ABSTRACT

Flexible strain sensors, when considering high sensitivity and a large strain range, have become a key requirement for current robotic applications. However, it is still a thorny issue to take both factors into consideration at the same time. Here, we report a sandwich-structured strain sensor based on Fe nanowires (Fe NWs) that has a high GF (37-53) while taking into account a large strain range (15-57.5%), low hysteresis (2.45%), stability, and low cost with an areal density of Fe NWs of 4.4 mg/cm2. Additionally, the relationship between the contact point of the conductive network, the output resistance, and the areal density of the sensing unit is analyzed. Microscopically, the contact points of the conductive network directly affect the sensor output resistance distribution, thereby affecting the gauge factor (GF) of the sensor. Macroscopically, the areal density and the output resistivity of the strain sensor have the opposite percolation theory, which affects its linearity performance. At the same time, there is a positive correlation between the areal density and the contact point: when the stretching amount is constant, it theoretically shows that the areal density affects the GF. When the areal density reaches this percolation threshold range, the sensing performance is the best. This will lay the foundation for rapid applications in wearable robots.

SELECTION OF CITATIONS
SEARCH DETAIL