Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(21): 9130-9138, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739029

ABSTRACT

C-H carboxylation of furoic acid (FA) with CO2 is an atom-efficient strategy to produce 2,5-furandicarboxylic acid (2,5-FDCA) from lignocellulose. The existing carbonate-promoted CO2 carboxylation processes rely on the use of large amounts of expensive Cs2CO3 as a deprotonating reagent and molten salt. Substitution of Cs with other cheap and abundant alkali ions (such as K and Na) can reduce the use of Cs, but it faces the problem of a low yield of 2,5-FDCA. This study found that the addition of catalytic amounts of ZnCl2 as a Lewis acid can increase the yield of 2,5-FDCA in the CO2 carboxylation reaction of Na/K-FA in a molten salt reaction system. 1H NMR analysis and DFT calculations confirmed that ZnCl2 coordinates with the furan ring through electron transfer from the conjugated furan ring to Zn2+, thereby activating the H at the C5 position of Na/K-FA. This coordination lengthened the C5-H bond and lowered its heterolytic dissociation energy, making it more susceptible to being deprotonated by CO32- and subsequently carboxylated by CO2. The developed Lewis acid coordination strategy provides a new idea for the efficient construction of C-C bonds between CO2 and aromatics through carbonate-promoted C-H carboxylation.

2.
Heliyon ; 9(11): e21811, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027598

ABSTRACT

Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO2 (scCO2) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO2 pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO2 and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO2 pretreatment of cocktail for 0.5-1.0 h at 10.0-22.0 MPa and 38.0-54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity.

3.
3 Biotech ; 13(7): 233, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37323858

ABSTRACT

Lignocellulosic biomass resource has been widely used as a natural resource for the synthesis of biofuels and bio-based products through pre-treatment, saccharification and fermentation processes. In this review, we delve into the environmental implications of bioethanol production from the widely utilized lignocellulosic biomass resource. The focus of our study is the critical stage of pre-treatment in the synthesis process, which also includes saccharification and fermentation. By collecting scientific data from the available literature, we conducted a comprehensive life cycle analysis. Our findings revealed substantial differences in the environmental burdens associated with diverse pre-treatment methods used for lignocellulosic biomass. These results highlight the importance of selecting environmentally benign pre-treatment techniques to promote the sustainability of bioethanol production. Future research directions are suggested, emphasizing the optimization of pre-treatment processes to further mitigate their environmental impact.

4.
J Hazard Mater ; 453: 131339, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37058938

ABSTRACT

Strict bans on specific risk materials (SRMs) are in place to prevent the spread of bovine spongiform encephalopathy (BSE). SRMs are characterized as tissues in cattle where misfolded proteins, the potential source of BSE infection, are concentrated. As a result of these bans, SRMs must be strictly isolated and disposed of, resulting in great costs for rendering companies. The increasing yield and the landfill of SRMs also exacerbated the burden on the environment. To cope with the emergence of SRMs, novel disposal methods and feasible value-added conversion routes are needed. The focus of this review is on the valorization progress achieved in the conversion of peptides derived from SRMs via an alternative disposal method, thermal hydrolysis. Promising value-added conversion of SRM-derived peptides into tackifiers, wood adhesives, flocculants, and bioplastics, is introduced. The potential conjugation strategies that can be adapted to SRM-derived peptides for desired properties are also critically reviewed. The purpose of this review is to discover a technical platform through which other hazardous proteinaceous waste, SRMs, can be treated as a high-demand feedstock for the production of renewable materials.


Subject(s)
Encephalopathy, Bovine Spongiform , Animals , Cattle , Encephalopathy, Bovine Spongiform/prevention & control , Proteins
5.
Sci Total Environ ; 882: 163326, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37030361

ABSTRACT

Sewage sludge (SS) contains a certain amount of nitrogen (N), resulting in various content of N in the pyrolysis products. Investigates on how to control the generation of NH3 and HCN (deleterious gas-N species) or convert it to N2 and maximize transforming N in sewage sludge (SS-N) into potentially valuable N-containing products (such as char-N and/or liquid-N) are of great significance for SS management. Understanding the nitrogen migration and transformation (NMT) mechanisms in SS during the pyrolysis process is essential for investigating the aforementioned issues. Therefore, in this review, the N content and species in SS are summarized, and the influencing factors during the SS pyrolysis process (such as temperature, minerals, atmosphere, and heating rate) that affect NMT in char, gas, and liquid products are analyzed. Furthermore, N control strategies in SS pyrolysis products are proposed toward environmental and economic sustainability. Finally, the state-of-the-art of current research and future prospects are summarized, with a focus on the generation of value-added liquid-N and char-N products, while concurrently reducing NOx emission.

6.
Microb Physiol ; 33(1): 36-48, 2023.
Article in English | MEDLINE | ID: mdl-36944321

ABSTRACT

Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Virulence , Anti-Bacterial Agents/pharmacology , Soil , Metals, Heavy/toxicity , Metals, Heavy/analysis , Metals, Heavy/metabolism , Bacteria/genetics , Biofilms , Virulence Factors/genetics , Virulence Factors/pharmacology , Ciprofloxacin/pharmacology , Peptide Hydrolases/pharmacology , Lipase/pharmacology
7.
Waste Manag ; 160: 156-164, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36827884

ABSTRACT

Realization of low temperature and high efficiency oxidation of CaSO3 is the key to solve the issue of ecological hazards caused by semi-dry sintering flue gas desulfurization ash. The subcritical hydrothermal technology was employed for the oxidation of CaSO3, achieving 89.83% of CaSO3 at 180 °C, 2 MPa for 120 min with a solid-to-liquid ratio of 1:20. The macroscopic oxidation kinetics of CaSO3 in the subcritical hydrothermal reaction system was investigated. A mathematical model was established, incorporating the intrinsic reaction, CaSO3 dissolution, oxygen diffusion and CaSO4 precipitation. It was concluded that the macroscopic oxidation of CaSO3 was co-controlled by the oxygen diffusion and CaSO4 precipitation. Subcritical hydrothermal technology promises not only higher efficiency, but more importantly, potentially "one-step" preparation of CaSO4 whiskers, enabling cost-effective and high value-added resource utilization of the semi-dry FGD ash.


Subject(s)
Cold Temperature , Iron , Kinetics , Oxidation-Reduction , Oxygen
8.
Environ Technol ; : 1-17, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36749305

ABSTRACT

Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.

9.
Int J Biol Macromol ; 221: 426-434, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36084872

ABSTRACT

The cellulose nanocrystals (CNCs) were produced from spruce wood using less hazardous and toxic reagents with understanding of influence of process parameters on CNCs properties. This study employed acetosolv pulping followed by alkaline-peroxide bleaching, eliminating highly reactive chemicals such as Na-chlorites and Na-sulfite for cellulose pulp extraction from spruce wood. Cellulose pulp yield of 41.5 ± 0.7 wt% of dry wood was obtained from pulping followed by bleaching treatment. Cellulose pulp was hydrolyzed with 59.0-65.0 wt% sulfuric acid followed by ultrasonic treatment to produce CNCs. CNCs yield of 8.0 ± 3.2 wt% of dry wood was obtained at 65 wt% acid concentration and yield of 25.1 ± 0.7 wt% at 62 wt% acid concentration. The optimization of acid hydrolysis and ultrasonic treatment resulted in CNCs with high aspect ratios (length/width) up to 48.1. It was demonstrated that higher acid concentration requires lower intensity of ultrasonic treatment for CNCs dispersion, and that higher intensity could enhance aspect ratio without impacting the crystallinity index. However, ultrasonic treatment for longer than 5 min led to destruction of the whisker morphology of CNCs. The extracted CNCs possess high crystallinity index of 80.8 ± 1.7 %, low residual hemicellulose (<2.0 %) and lignin (<0.7 %), and high-char content of 26.7 wt% from thermal degradation.


Subject(s)
Nanoparticles , Picea , Cellulose/chemistry , Wood/chemistry , Hydrolysis , Lignin/analysis , Nanoparticles/chemistry
10.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956924

ABSTRACT

Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78-87%. The insecticidal activity results show that the introduction of halopyrazole groups can significantly improve the insecticidal activity of matrine on Plutella xylostella, Mythimna separata and Spodoptera frugiperda with a corrected mortality rate of 100%, which is 25-65% higher than matrine. The fungicidal activity results indicate that derivatives have a high inhibitory effect on Ceratobasidium cornigerum, Cibberella sanbinetti, Gibberrlla zeae and Collectot tichum gloeosporioides. Thereinto, 4-Cl-Pyr-Mat has the best result, with an inhibition rate of 23-33% higher than that of matrine. Therefore, the introduction of halogenated pyrazole groups can improve the agricultural activity of matrine.


Subject(s)
Insecticides , Moths , Alkaloids , Animals , Insecticides/pharmacology , Molecular Structure , Quinolizines/pharmacology , Structure-Activity Relationship , Matrines
11.
ACS Omega ; 7(32): 27851-27863, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990502

ABSTRACT

The effect of interphase properties on the crystallization behavior of blends of poly(lactic acid) (PLA)/acetylated starch (AS) with different degrees of substitution (DSs) was investigated. Under isothermal crystallization conditions, the rate of crystallization was higher for PLA/DS0.5 and lower for PLA/DS1.5 and PLA/DS2.5 when compared to PLA. In contrast, non-isothermal crystallization behavior indicated a slower rate of crystallization of PLA/DS0.5 and a faster rate of crystallization of PLA/DS1.5 and PLA/DS2.5 compared to PLA at the highest cooling rate (5 °C/min). The potential relationship between crystallization behavior and interphase properties and interphase thickness and formation of rigid amorphous fraction in the interphase, was investigated. The formation of a rigid amorphous fraction in PLA/DS1.5 and a thick interphase in PLA/DS2.5 prevented the formation of crystals on the dispersed phase and interrupted the crystallization under isothermal conditions. Hydrogen bonding in the PLA/DS1.5 blend and hydrophobic interactions in the PLA/DS2.5 blend may facilitate the crystallization at high cooling rates under non-isothermal conditions. Small-angle X-ray scattering analysis revealed the presence of a smaller lamellar structure in PLA/AS blends. The largest amorphous phase among blends was observed for the PLA/DS1.5 blend, which can be attributed to the hydrogen bonding in the interphase region of this blend.

12.
Chemosphere ; 307(Pt 4): 136090, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995182

ABSTRACT

Carbonyl sulfide (COS), a poisonous and harmful gas, is found in industrial gas products from various coal-firing processes. The emission of COS into the atmosphere contributes to aerosol particles that affect the global climate, posing a risk to climate change and population health. In recent years, the total amount of anthropogenic COS emissions has increased significantly, resulting in the prominent COS pollution problem and becoming a vital environmental issue. This review summarizes the research progress of removing COS from industrial gases. According to the characteristics of different industrial gas products, the COS removal mechanism and influence factors, as well as the advantages and disadvantages for various methods, are discussed, including oxidation, absorption/adsorption, hydrogenation, and hydrolysis. Although COS emission control technologies have attracted widespread attention, the progress of application in blast furnace gas purification has been extremely slow, insufficient and sporadic. To fill the gap, this work provides a timely review on blast furnace gas characteristics and application process of various methods for removing COS from blast furnace gas with varying compositions, and their challenges and future development. This work aims to provide guidance on how effective processes and techniques for removal of COS from blast furnace gas can be developed. This review emphasizes the desirability of direct COS removal from blast furnace gas compared to expensive terminal desulfurization technologies. Furthermore, the development of a new process for low-temperature COS removal from blast furnace gas based on a dual-functional catalyst of hydrolysis/adsorption is advocated.


Subject(s)
Coal , Sulfur Oxides , Gases , Sulfur
13.
Appl Biochem Biotechnol ; 194(11): 5060-5082, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35687308

ABSTRACT

The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.


Subject(s)
Bacillus , Cellulase , Cellulases , Cellulase/chemistry , Cellulose , Soil , Carboxymethylcellulose Sodium , Agar , Congo Red , Nitrogen , Temperature , Carbon , Glucose , Sucrose , Gelatinases , Hydrogen-Ion Concentration
15.
Molecules ; 26(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833854

ABSTRACT

To investigate the effects of lignin methylolation and lignin adding stage on the resulted lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhesives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity than ML or AL introduction into phenolic adhesives at any other stages. Lignin methylolation and lignin adding stage did not affect the thermal stability of lignin based phenolic adhesives, even though lignin-based adhesives were less thermally stable than NPF. Typical three-stage degradation characteristics were also observed on all the lignin-based phenolic adhesives. Three-ply plywoods can be successfully laminated with lignin based adhesives, and it was interesting that after 3 h of cooking in boiling water, the plywoods specimens bonded with lignin-based phenolic adhesives displayed higher bonding strength than the corresponding dry strength obtained after direct conditioning at 20 °C and 65% RH. Compared with NPF, lignin introduction significantly reduced the bonding strength of lignin based phenolic adhesives when applied for plywood lamination. However, no significant variation of bonding strength was detected among the lignin based phenolic adhesives, regardless of lignin methylolation or adding stages.


Subject(s)
Adhesives/chemistry , Lignin/chemistry , Phenols/chemistry , Polymerization , Viscosity
16.
ACS Omega ; 6(5): 3612-3624, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33644526

ABSTRACT

The accurate prediction of fertilizer crushing force could reduce the crushing rate in the process of transportation and utilization and ensure the efficient utilization of the fertilizer so as to realize the sustainable and clean production of crops. To achieve this goal, a fertilizer crushing force prediction model based on the shape characteristics was proposed in this paper using the Pearson correlation coefficient, differential evolution algorithm, and the support vector machine (P-DE-SVM). First, the shape characteristics and crushing force of fertilizers were measured by an independently developed agricultural material shape analyzer and digital pressure gauge, and the shape characteristics related to the fertilizer crushing force were proposed based on the Pearson correlation coefficient. Second, a fertilizer crushing force prediction model based on a support vector machine was constructed, in which the optimal kernel function was the radial basis function. Finally, a differential evolution algorithm was proposed to optimize the internal parameters of the fertilizer-crushing force prediction model, and at the same time, a fertilizer granularity inspection range was calculated. The experimental results showed that the maximum error rate of the fertilizer crushing force prediction model was between -10.4 and 10.9%, and the fertilizer granularity inspection range was reasonable. The proposed prediction model in this paper could lay a solid foundation for fertilizer production and quality inspection, which would help reduce fertilizer crushing and improve fertilizer utilization to realize the sustainable and clean production of crops.

17.
Sci Total Environ ; 754: 142429, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254845

ABSTRACT

Wastewater treatment is a high-cost and energy-intensive process not only due to large amounts of pollutants but also for the large volumes of water to be treated, which are mainly generated by human activities and different industries. In this regard, biological wastewater treatments have become substitutes to the current technologies, owing to the improved treatment efficiency and added value. Microbial fuel cells (MFCs) as one of the promising biological treatments have arisen as a viable solution for chemical oxygen demand (COD) removal and electricity generation simultaneously. Therefore, in this article, the effects of various operating conditions on the COD removal and power production from MFCs are thoroughly discussed. In addition, the advantages and weaknesses of current MFCs technologies used for different types of wastewater are summarized. Finally, the technical barriers facing by MFCs operation and the economic feasibility of using MFCs for wastewater treatment are provided.


Subject(s)
Bioelectric Energy Sources , Biological Oxygen Demand Analysis , Electricity , Electrodes , Wastewater
18.
Sci Rep ; 10(1): 17999, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093526

ABSTRACT

The invasion of Spodoptera frugiperda has imposed a serious impact on global food security. Matrine is a botanical pesticide with a broad spectrum of insecticidal activity which was recommended for controlling Spodoptera frugiperda. In order to discover effective insecticide for Spodoptera frugiperda, two matrine derivatives modified with carbon disulfide and nitrogen-containing groups were systhesized. And their inhibition activities on Sf9 cell were evaluated. The structural configuration of compounds were characterized by IR, HPLC, MS, NMR and XRD, with yields of 52% and 65%, respectively. The IC50 of the two newly synthesized compounds on Sf9 cell reduced to 0.648 mmol/L and 1.13 mmol/L, respectively, compared with that of matrine (5.330 mmol/L). In addition, microscopic observation of Sf9 cell treated with the compounds showed that the number of adherent cells decreased, the cells shrunk, vacuolated and apoptotic bodies appeared. The two newly synthesized compounds exhibited better inhibitory effect on Sf9 cell than that of the parent matrine, suggesting that the positive effect of the introduction of 1-pyrrolidinecarbodithioate and diethylcarbamodithioate groups to matrine. The morphological observation of Sf9 cell induced by derivatives indicated that apoptosis induction may be a mechanism that inhibits insect cell proliferation and exerts insecticidal effect.


Subject(s)
Alkaloids/chemical synthesis , Alkaloids/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Quinolizines/chemical synthesis , Quinolizines/pharmacology , Spodoptera/growth & development , Animals , Apoptosis , Cell Proliferation , Sf9 Cells , Spodoptera/drug effects , Matrines
19.
Chem Commun (Camb) ; 56(71): 10357-10360, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32760984

ABSTRACT

Methacrylated lignin was reacted with PH3(g) to prepare a phosphorus rich bio-based polymer containing PH/PH2 functional groups, which were converted to tertiary phosphine units via the phosphane-ene reaction. This represents a straightforward method for the upconversion of low-value biomass waste to useful inorganic polymer with potential utility in metal scavenging applications.


Subject(s)
Lignin/chemistry , Metals/chemistry , Phosphines/chemistry , Biomass
20.
ACS Omega ; 5(25): 15390-15401, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637813

ABSTRACT

In this article, supercritical water gasification of biocrude at different conditions was performed and compared to each other. Three scenarios were considered while treating biocrude originating from cattle manure (CM) and corn husk (CH), namely, uncatalyzed feedstock, catalyzed with 10% Ni-0.08% Ru/Al2O3 and finally catalyzed with 10% Ni-0.08% Ru/Al2O3-ZrO2. It was found that 10% Ni-0.08% Ru/Al2O3-ZrO2 has performed significantly better than the other two scenarios over the 5 hour run time with a 193 and 187% higher hydrogen yield compared to the uncatalyzed and 10% Ni-0.08% Ru/Al2O3 catalyzed scenarios, respectively. Compared to CM gasification in the presence of a 10% Ni-0.08% Ru/Al2O3-ZrO2 catalyst, the catalyst got deactivated because of the high phenol and furan content in the corn husk biocrude, therefore hydrogen yield performance fell significantly. It was observed that the carbon gasification efficiency of the biocrude was independent of temperature. In terms of carbon conversion, the equilibrium conditions for the biocrude considered were attained at lower temperature. A mechanistic model based on the Eley-Rideal method was devised and tested against the obtained data. The dissociation of adsorbed oxygenated hydrocarbon is found to be the rate-determining step with an average absolute deviation of 3.55%.

SELECTION OF CITATIONS
SEARCH DETAIL
...