Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.030
Filter
1.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961317

ABSTRACT

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Subject(s)
Depression , Habenula , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Animals , Habenula/metabolism , Habenula/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Male , Depression/metabolism , Neuralgia/metabolism , Neuralgia/psychology , Mice, Inbred C57BL , Chronic Pain/metabolism , Chronic Pain/psychology , Potassium Channels
2.
PLoS One ; 19(7): e0306469, 2024.
Article in English | MEDLINE | ID: mdl-38968196

ABSTRACT

The primary objective of this study was to discern the determinants affecting the ice hockey game based on the performance of the fast attack between the winning and losing teams. Data from the women's ice hockey games at the Beijing 2022 Winter Olympics (n = 28) were used. A total of 2011 fast attacks were recorded, which included winning team 1156 times and losing team 855 times. 29 variables from nine categories were involved and analysed using chi-square tests, univariate tests and binary logistic regression. As a result, that fast attack performance varies between winning and losing teams, Effective Offensive Play. Scoring Analysis of the 2005 World Championships and the 2006 Olympics, INT, DZ, OZ, one-timer, dekes, shooting zone 1, shooting zone 3, shooting zone 4, SOG, SG%, 2nd period, PK, are key variables in distinguishing the winner and loser (P<0.05). The predictive model shows that shooting zone 4 (OR = 0.824), one-timer (OR = 1.255), 2nd period (OR = 1.193), SOG (OR = 1.230), and SG% (OR = 1.170) are determining factors of game outcomes. The current information has important practical applications as it allows coaches and players to improve the tactical strategy and offensive efficiency of the game.


Subject(s)
Athletic Performance , Hockey , Humans , Female , Athletic Performance/physiology , Athletes
3.
Transl Cancer Res ; 13(6): 2704-2720, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988915

ABSTRACT

Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths, and improving the prognosis of CRC patients is an urgent concern. The aim of this study was to explore new immunotherapy targets to improve survival in CRC patients. Methods: We analyzed CRC-related single-cell data GSE201348 from the Gene Expression Omnibus (GEO) database, and identified differentially expressed genes (DEGs). Subsequently, we performed differential analysis on the rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) transcriptome sequencing data [The Cancer Genome Atlas (TCGA)-CRC queue] and clinical data downloaded from TCGA database. Subgroup analysis was performed using CIBERSORTx and cluster analysis. Finally, biomarkers were identified by one-way cox regression as well as least absolute shrinkage and selection operator (LASSO) analysis. Results: In this study, we analyzed CRC-related single-cell data GSE201348, and identified 5,210 DEGs. Subsequently, we performed differential analysis on the TCGA-CRC queue database, and obtained 4,408 DEGs. Then, we categorized the cancer samples in the sequencing data into three groups (k1, k2, and k3), with significant differences observed between the k1 and k2 groups via survival analysis. Further differential analysis on the samples in the k1 and k2 groups identified 1,899 DEGs. A total of 77 DEGs were selected among those DEGs obtained from three differential analyses. Through subsequent Cox univariate analysis and LASSO analysis, seven biomarkers (RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, and ATOH1) were identified and selected to establish a risk score (RS). Conclusions: To sum up, this study demonstrates the potential of the seven-gene prognostic risk model as instrumental variables for predicting the prognosis of CRC.

4.
Biomaterials ; 311: 122691, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38996673

ABSTRACT

Acoustic holography (AH), a promising approach for cell patterning, emerges as a powerful tool for constructing novel invitro 3D models that mimic organs and cancers features. However, understanding changes in cell function post-AH remains limited. Furthermore, replicating complex physiological and pathological processes solely with cell lines proves challenging. Here, we employed acoustical holographic lattice to assemble primary hepatocytes directly isolated from mice into a cell cluster matrix to construct a liver-shaped tissue sample. For the first time, we evaluated the liver functions of AH-patterned primary hepatocytes. The patterned model exhibited large numbers of self-assembled spheroids and superior multifarious core hepatocyte functions compared to cells in 2D and traditional 3D culture models. AH offers a robust protocol for long-term in vitro culture of primary cells, underscoring its potential for future applications in disease pathogenesis research, drug testing, and organ replacement therapy.

5.
J Agric Food Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016109

ABSTRACT

S-Adenosylmethionine (SAM) is a crucial metabolic intermediate playing irreplaceable roles in organismal activities. However, the synthesis of SAM by methionine adenosyltransferase (MAT) is hindered by low conversion due to severe product inhibition. Herein structure-guided semirational engineering was conducted on MAT from Escherichia coli (EcMAT) to mitigate the product inhibitory effect. Compared with the wild-type EcMAT, the best variant E56Q/Q105R exhibited an 8.13-fold increase in half maximal inhibitory concentration and a 4.46-fold increase in conversion (150 mM ATP and l-methionine), leading to a SAM titer of 47.02 g/L. Another variant, E56N/Q105R, showed superior thermostability with an impressive 85.30-fold increase in half-life (50 °C) value. Furthermore, molecular dynamics (MD) simulation results demonstrate that the alleviation in product inhibitory effect could be attributed to facilitated product release. This study offers molecular insights into the mitigated product inhibition, and provides valuable guidance for engineering MAT toward enhanced catalytic performance.

6.
Sci Bull (Beijing) ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39009487

ABSTRACT

One-dimensional (1D) semiconductor nanostructures exhibit exceptional performance in mitigating short-channel effects and ensuring low power consumption. However, the scarcity of high-mobility p-type 1D materials impedes further advancement. Molecular-based materials offer high designability in structure and properties, making them a promising candidate for 1D p-type semiconductor materials. A molecular-based 1D p-type material was developed under the guidance of coordination chemistry. Cu-HT (HT is the abbreviation of p-hydroxy thiophenol) combines the merits of highly orbital overlap between Cu and S, fully covered surface modification with phenol functional groups, and unique cuprophilic (Cu-Cu) interactions. As such, Cu-HT has a remarkable hole mobility of 27.2 cm2 V-1 s-1, which is one of the highest reported values for 1D molecular-based materials to date and even surpass those of commonly used amorphous silicon as well as the majority of 1D inorganic materials. This achievement underscores the significant potential of coordination polymers in optimizing carrier transport and represents a major advancement in the synthesis of high-performance, 1D p-type semiconductor materials.

7.
Molecules ; 29(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999159

ABSTRACT

Poly(p-phenylene ethynylene) (PPE) molecular wires are one-dimensional materials with distinctive properties and can be applied in electronic devices. Here, the approach called first-principles quantum transport is utilized to investigate the PPE molecular wire field-effect transistor (FET) efficiency limit through the geometry of the gate-all-around (GAA) instrument. It is observed that the n-type GAA PPE molecular wire FETs with a suitable gate length (Lg = 5 nm) and underlap (UL = 1, 2, 3 nm) can gratify the on-state current (Ion), power dissipation (PDP), and delay period (τ) concerning the conditions in 2028 to achieve the higher performance (HP) request of the International Roadmap for Device and Systems (IRDS, 2022 version). In contrast, the p-type GAA PPE molecular wire FETs with Lg = 5, 3 nm, and UL of 1, 2, 3 nm could gratify the Ion, PDP, and τ concerning the 2028 needs to achieve the HP request of the IRDS in 2022, while Lg = 5 and UL = 3 nm could meet the Ion and τ concerning the 2028 needs to achieve the LP request of the IRDS in 2022. More importantly, this is the first one-dimensional carbon-based ambipolar FET. Therefore, the GAA PPE molecular wire FETs could be a latent choice to downscale Moore's law to 3 nm.

8.
J Orthop Surg Res ; 19(1): 407, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014435

ABSTRACT

PURPOSE: Oncostatin M (OSM) is involved in the regulation of osteogenic differentiation and has a major role in the development of heterotopic ossification. The role of OSM in osteogenic differentiation of tendon-derived stem cells (TDSCs) and its mechanism have not been reported. This study aim to investigate the role of OSM in osteogenic differentiation of TDSCs and study the mechanism. METHODS: TDSCs were differentiated in osteogenic differentiation medium for 7 days. Recombinant OSM was added to the osteogenic differentiation medium for 7 and 14 days. The effect of Janus kinase 2 (JAK2) inhibitor AZD1480 and signal transducer and activator of transcription 3 (STAT3) inhibitor stattic in the presence of recombinant OSM on osteogenic differentiation of TDSCs was examined after differentiation for 7 and 14 days. Alkaline phosphatase and alizarin red staining were used to assess the effects on early and mid-stage osteogenic differentiation, respectively. Western blotting and qPCR were used to assess the expression of receptor and signalling pathway-related proteins and osteogenic marker genes, respectively. RESULTS: TDSCs were successfully induced to differentiate into osteoblasts. Recombinant OSM promoted osteogenic differentiation of TDSCs to early and mid-stages. After addition of AZD1480 or stattic, decreased alkaline phosphatase and alizarin red staining were observed in the early and mid-stages of osteogenic differentiation. Additionally, decreased expression of receptor and pathway-related proteins, and osteogenic genes was found by western blotting and qPCR, respectively. CONCLUSION: OSM promotes osteogenic differentiation of TDSCs and the JAK2/STAT3 signalling pathway plays an important role.


Subject(s)
Cell Differentiation , Janus Kinase 2 , Oncostatin M , Osteogenesis , STAT3 Transcription Factor , Signal Transduction , Stem Cells , Tendons , Oncostatin M/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Tendons/cytology , Stem Cells/drug effects , Humans , Cells, Cultured , Animals
9.
Nat Commun ; 15(1): 5731, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977708

ABSTRACT

Neuropilin-1 (NRP1), a co-receptor for various cytokines, including TGF-ß, has been identified as a potential therapeutic target for fibrosis. However, its role and mechanism in renal fibrosis remains elusive. Here, we show that NRP1 is upregulated in distal tubular (DT) cells of patients with transplant renal insufficiency and mice with renal ischemia-reperfusion (I-R) injury. Knockout of Nrp1 reduces multiple endpoints of renal injury and fibrosis. We find that Nrp1 facilitates the binding of TNF-α to its receptor in DT cells after renal injury. This signaling results in a downregulation of lysine crotonylation of the metabolic enzyme Cox4i1, decreases cellular energetics and exacerbation of renal injury. Furthermore, by single-cell RNA-sequencing we find that Nrp1-positive DT cells secrete collagen and communicate with myofibroblasts, exacerbating acute kidney injury (AKI)-induced renal fibrosis by activating Smad3. Dual genetic deletion of Nrp1 and Tgfbr1 in DT cells better improves renal injury and fibrosis than either single knockout. Together, these results reveal that targeting of NRP1 represents a promising strategy for the treatment of AKI and subsequent chronic kidney disease.


Subject(s)
Acute Kidney Injury , Fibrosis , Mice, Knockout , Neuropilin-1 , Receptor, Transforming Growth Factor-beta Type I , Reperfusion Injury , Smad3 Protein , Neuropilin-1/metabolism , Neuropilin-1/genetics , Animals , Humans , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Mice, Inbred C57BL , Kidney Tubules/pathology , Kidney Tubules/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Collagen/metabolism
10.
Immunotargets Ther ; 13: 349-366, 2024.
Article in English | MEDLINE | ID: mdl-39050484

ABSTRACT

Background: The heterogeneity and dynamic changes of endometrial cells have a significant impact on health as they determine the normal function of the endometrium during the menstrual cycle. Dysfunction of the endometrium can lead to the occurrence of various gynecological diseases. Therefore, deconvolution of immune microenvironment that drives transcriptional programs throughout the menstrual cycle is key to understand regulatory biology of endometrium. Methods: Herein, we comprehensively analyzed single-cell transcriptome of 59,397 cells across ten human endometrium samples and revealed the dynamic cellular heterogeneity throughout the menstrual cycle. Results: We identified two perivascular cell subtypes, four epithelial subtypes and four fibroblast cell types in endometrium. Moreover, we inferred the cell type-specific transcription factor (TF) activities and linked critical TFs to transcriptional output of diverse immune cell types, highlighting the importance of transcriptional regulation in endometrium. Dynamic interactions between various types of cells in endometrium contribute to a range of biological pathways regulating differentiation of secretory. Integration of the molecular biomarkers identified in endometrium and bulk transcriptome of 535 endometrial cancers (EC), we revealed five RNA-based molecular subtypes of EC with highly intratumoral heterogeneity and different clinical manifestations. Mechanism analysis uncovered clinically relevant pathways for pathogenesis of EC. Conclusion: In summary, our results revealed the dynamic immune microenvironment of endometrium and provided novel insights into future development of RNA-based treatments for endometriosis and endometrial carcinoma.

11.
Sci Rep ; 14(1): 17115, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048647

ABSTRACT

Secure multi-party computation of Chebyshev distance represents a crucial method for confidential distance measurement, holding significant theoretical and practical implications. Especially within electronic archival management systems, secure computation of Chebyshev distance is employed for similarity measurement, classification, and clustering of sensitive archival information, thereby enhancing the security of sensitive archival queries and sharing. This paper proposes a secure protocol for computing Chebyshev distance under a semi-honest model, leveraging the additive homomorphic properties of the NTRU cryptosystem and a vector encoding method. This protocol transforms the confidential computation of Chebyshev distance into the inner product of confidential computation vectors, as demonstrated through the model paradigm validating its security under the semi-honest model. Addressing potential malicious participant scenarios, a secure protocol for computing Chebyshev distance under a malicious model is introduced, utilizing cryptographic tools such as digital commitments and mutual decryption methods. The security of this protocol under the malicious model is affirmed using the real/ideal model paradigm. Theoretical analysis and experimental simulations demonstrate the efficiency and practical applicability of the proposed schemes.

12.
ACS Omega ; 9(28): 30998-31005, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035893

ABSTRACT

Biomachining is an eco-friendly metal processing method with broad application potential. Nevertheless, the bacterial culture methods that are currently involved in biomachining require the intensive use of chemical reagents, especially FeSO4, specialized equipment, and professional-level skills in the field of biology. Herein, the differences between two cultures with and without sterilization were evaluated. Acidithiobacillus ferrooxidans was cultured with iron instead of FeSO4 in the culture medium. The chemical and biochemical parameters of the culture were analyzed by studying the area of exposed iron and continuously regulating the pH. Eliminating the sterilization and sterile inoculation of the medium is feasible for culturing A. ferrooxidans. The key to achieving a high bacterial density in culture with iron was to maintain the solution pH. The possibility of mass culturing A. ferrooxidans with steel cuttings was evaluated in a custom bioreactor, and the bacterial concentration reached 9 × 107 cells/mL.

13.
J Fungi (Basel) ; 10(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39057370

ABSTRACT

Sisal is an important tropical cash crop in southern China. Unfortunately, it is threatened by various diseases. In 2022, a new disease tentatively named marginal leaf blight disease (MLBD) was first observed in sisal fields across Guangxi and Guangdong provinces, with an incidence rate ranging from 13% to 30%. In this work, to isolate and identify the pathogens causing MLBD, sisal leaves exhibiting the typical MLBD symptoms were collected, and nine strains were obtained. Pathogenicity tests, morphological observations, and phylogenetic analyses confirmed that two strains, namely 22GX1-3 and 22GD1-4, identified as Phaeosphaeriopsis obtusispora, were the causative pathogens of MLBD. Further investigations into the biological characteristics of P. obtusispora showed that its mycelia exhibited optimal growth on PDA medium, with the most favourable temperature and pH being 25 °C and 7.0, respectively. The mycelia could grow in temperatures ranging from 10 °C to 32 °C but ceased at 35 °C. Lactose and yeast extract powder were also identified as the optimal carbon and nitrogen sources, respectively. Additionally, the effectiveness of various control agents was assessed on a single strain, 22GX1-3. Among the twelve fungicides tested, difenoconazole was proven the most effective, with an EC50 value of 0.5045 µg/mL. To our knowledge, this is the first report for sisal MLBD caused by P. obtusispora. Our results provide crucial pieces of information for the development of effective management strategies to control sisal MLBD caused by P. obtusispora.

15.
Structure ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39025068

ABSTRACT

The Pseudomonas aeruginosa lipase PaL catalyzes the stereoselective hydrolysis of menthyl propionate to produce L-menthol. The lack of a three-dimensional structure of PaL has so far prevented a detailed understanding of its stereoselective reaction mechanism. Here, the crystal structure of PaL was determined at a resolution of 1.80 Å by single-wavelength anomalous diffraction. In the apo-PaL structure, the catalytic His302 is located in a long loop on the surface that is solvent exposed. His302 is distant from the other two catalytic residues, Asp274 and Ser164. This configuration of catalytic residues is unusual for lipases. Using metadynamics simulations, we observed that the enzyme undergoes a significant conformational change upon ligand binding. We also explored the catalytic and stereoselectivity mechanisms of PaL by all-atom molecular dynamics simulations. These findings could guide the engineering of PaL with an improved diastereoselectivity for L-menthol production.

16.
Circulation ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841852

ABSTRACT

BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.

17.
J Orthop Surg Res ; 19(1): 340, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849937

ABSTRACT

BACKGROUND: Lumbar spondylolysis is a bone defect in the pars interarticularis of the lumbar vertebral, which is a common cause of low back pain in youth. Although non-surgical treatment is a mainstream option, surgery is necessary for patients with persistent symptoms. Buck technique is widely used as a classical direct repair technique, but it cannot achieve reduction of low-grade spondylolisthesis and reconstruction of lumbosacral sagittal balance. We have described a novel surgical procedure based on Buck technique with temporary intersegmental pedicle screw fixation, and report a series of clinical outcomes in 5 patients to provide a reference for the clinical treatment of young lumbar spondylolysis. METHODS: Five young patients with symptomatic lumbar spondylolysis with a mean age of 19.20 ± 5.41 years underwent surgical treatment after an average of 7.60 ± 1.52 months of failure to respond to conservative treatment, using a new surgical procedure based on Buck technique combined with temporary intersegmental pedicle screw fixation. RESULTS: Five patients were successfully operated without serious complications such as nerve and vascular injury. The average operation time was 109.00 ± 7.42 min, the interpretative average blood loss was 148.00 ± 31.14 ml, and the average fusion time was 11.20 ± 1.64 months. All patients were followed up for 2 years after surgery, and the visual analogue score (VAS) of low back pain and Oswestry disability index (ODI) scores were significantly improved compared with those before surgery, and the Henderson's evaluation were rated excellent or good. After the removal of the internal fixation, it was observed that temporary intersegmental fixation could repair the isthmus, reduce lumbar spondylolisthesis, and reconstruct the sagittal balance of the lumbosacral vertebrae while preserving lumbar motion and preventing intervertebral disc degeneration. Postoperative MRI indicated the Pfirrmann classification of the affected discs: 1 case from grade III to grade II, 3 cases from grade II to grade I, and 1 case remained grade II. CONCLUSIONS: Buck technique supplemented by temporary intersegmental pedicle screw fixation is a highly applicable and effective method for the treatment of adolescent lumbar spondylolysis. The isthmic fusion is accurate, and temporary intersegmental fixation can effectively prevent disc degeneration and reconstruct the sagittal balance of lumbosacral vertebra.


Subject(s)
Lumbar Vertebrae , Pedicle Screws , Spondylolysis , Humans , Spondylolysis/surgery , Spondylolysis/diagnostic imaging , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Adolescent , Male , Female , Young Adult , Adult , Treatment Outcome , Spinal Fusion/methods , Spinal Fusion/instrumentation , Follow-Up Studies , Low Back Pain/surgery , Low Back Pain/etiology
18.
Front Microbiol ; 15: 1291947, 2024.
Article in English | MEDLINE | ID: mdl-38915301

ABSTRACT

Introduction: Variability in microbial residues within soil aggregates are becoming progressively essential to the nutritive and sustainability of soils, and are therefore broadly regarded as an indispensable part of soil organic matter. It is unexplored how the widespread implementation of microbial fertilisers in agricultural production impacts soil organic nutrients, in particular the microbial residue fraction. Methods: We performed a three-year field experiment to verify the distinct impacts of microbial and organic fertilizers on carbon accumulation in soil microbial leftovers among aggregate fractions. Results: Microbial residual carbon was shown to decrease insignificantly during the application of microbial fertilizer and to rise marginally afterwards with the utilization of organic fertilizer. However, the combined effects of the two fertilizers had substantial impacts on the accumulation of microbial residual carbon. Changes in the structure of the fungi and bacteria shown in this study have implications for the short-term potential of microbial fertilizer shortages to permanent soil carbon sequestration. Additionally, our findings revealed variations in microbial residue accumulation across the microbial fertilizers, with Azotobacter chroococcum fertilizer being preferable to Bacillus mucilaginosus fertilizer due to its higher efficiency. In this scenario of nutrient addition, fungal residues may serve as the primary binding component or focal point for the production of new microaggregates, since the quantity of SOC provided by fungal residues increased while that supplied by bacterial residues decreased. Discussion: Our findings collectively suggested that the mechanisms behind the observed bacterial and fungal MRC (microbial residue carbon) responses to microbial fertilizer or organic fertilizer in bamboo forest soils are likely to be distinct. The application of microbial fertilizers for a limited duration led to a decline soil stable carbon pool, potentially influencing the regulation of soil nutrients in such hilly bamboo forests.

19.
Brain Sci ; 14(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928618

ABSTRACT

Intracerebral hemorrhage (ICH) is a critical condition characterized by a high prevalence, substantial mortality rates, and unpredictable clinical outcomes, which results in a serious threat to human health. Improving the timeliness and accuracy of prognosis assessment is crucial to minimizing mortality and long-term disability associated with ICH. Due to the complexity of ICH, the diagnosis of ICH in clinical practice heavily relies on the professional expertise and clinical experience of physicians. Traditional prognostic methods largely depend on the specialized knowledge and subjective judgment of healthcare professionals. Meanwhile, existing artificial intelligence (AI) methodologies, which predominantly utilize features derived from computed tomography (CT) scans, fall short of capturing the multifaceted nature of ICH. Although existing methods are capable of integrating clinical information and CT images for prognosis, the effectiveness of this fusion process still requires improvement. To surmount these limitations, the present study introduces a novel AI framework, termed the ICH Network (ICH-Net), which employs a joint-attention cross-modal network to synergize clinical textual data with CT imaging features. The architecture of ICH-Net consists of three integral components: the Feature Extraction Module, which processes and abstracts salient characteristics from the clinical and imaging data, the Feature Fusion Module, which amalgamates the diverse data streams, and the Classification Module, which interprets the fused features to deliver prognostic predictions. Our evaluation, conducted through a rigorous five-fold cross-validation process, demonstrates that ICH-Net achieves a commendable accuracy of up to 87.77%, outperforming other state-of-the-art methods detailed within our research. This evidence underscores the potential of ICH-Net as a formidable tool in prognosticating ICH, promising a significant advancement in clinical decision-making and patient care.

20.
Sci Rep ; 14(1): 14290, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906992

ABSTRACT

To investigate the effect and safety of percutaneous endovascular angioplasty (PEA) with optional stenting for the treatment of severe stenosis or occlusion of subclavian artery, patients with severe stenosis ≥ 70% or occlusion of subclavian artery treated with PEA were retrospectively enrolled. The clinical data were analyzed. A total of 222 patients were retrospectively enrolled, including 151 males (68.0%) and 71 females (32.0%) aged 48-86 (mean 63.9 ± 9.0) years. Forty-seven (21.2%) patients had comorbidities. Subclavian artery stenosis ≥ 70% was present in 201 (90.5%) patients and complete subclavian occlusion in 21 (9.5%) cases. Angioplasty was successfully performed in all (100%) patients. Balloon-expandable stents were used in 190 (85.6%) cases, and self-expandable stents in 20 (9.0%) cases. Only 12 (5.4%) cases were treated with balloon dilation only. Among 210 patients treated with stent angioplasty, 71 (33.8% or 71/210) cases underwent balloon pre-dilation, 139 (66.2% or 139/210) had direct deployment of balloon-expandable stents, and 2 (1.0% or 2/210) experienced balloon post-dilation. Distal embolization protection devices were used in 5 (2.3% or 5/222) cases. Periprocedural complications occurred in 3 (1.4%) patients, including aortic dissection in 2 (0.9%) cases and right middle cerebral artery embolism in 1 (0.5%). No hemorrhage occurred. Among 182 (82.0%) patients with 6-month follow-up, restenosis > 70% occurred in 1 (0.5%) patient, and among 68 (30.6%) patients with 12-month follow-up, restenosis > 70% took place in 11 (16.2%) patients. Percutaneous endovascular angioplasty can be safely and efficiently performed for the treatment of severe stenosis ≥ 70% or occlusion of subclavian artery.


Subject(s)
Stents , Subclavian Artery , Humans , Male , Female , Aged , Middle Aged , Aged, 80 and over , Subclavian Artery/surgery , Retrospective Studies , Stents/adverse effects , Treatment Outcome , Subclavian Steal Syndrome/therapy , Subclavian Steal Syndrome/surgery , Endovascular Procedures/methods , Endovascular Procedures/adverse effects , Angioplasty/methods , Angioplasty/adverse effects , Constriction, Pathologic/therapy , Angioplasty, Balloon/methods , Angioplasty, Balloon/adverse effects , Arterial Occlusive Diseases/therapy , Arterial Occlusive Diseases/surgery
SELECTION OF CITATIONS
SEARCH DETAIL