Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
Front Aging Neurosci ; 16: 1412542, 2024.
Article in English | MEDLINE | ID: mdl-39170900

ABSTRACT

Background: The association between lung function and motoric cognitive risk syndrome (MCR) is unclear. We aimed to explore the association of peak expiratory flow (PEF) with MCR using cross-sectional and longitudinal analyses. Methods: Within the CHARLS, 5095 participants were included in the cross-sectional analysis, and 4340 MCR-free participants were included in the longitudinal analysis. The PEF was assessed with a lung peak flow meter. MCR was characterized by cognitive complaints and a slow walking speed with normal mobility and without dementia. Logistic regression, Cox regression, and Laplace regression models were employed for data analysis. Results: In this cross-sectional study, logistic regression analyses revealed that continuous PEF was associated with MCR (odds ratio [OR], 0.998; 95% confidence interval [CI], 0.998, 0.999), and the ORs (95% CIs) of MCR prevalence were 0.857 (0.693, 1.061) for the middle tertile and 0.665 (0.524, 0.845) for the highest tertile compared to the lowest tertile. In a longitudinal cohort study, continuous PEF was dose-dependently associated with the risk of MCR. Compared with those in the lowest tertile of PEF, the hazard ratios (95% CIs) of incident MCR were 0.827 (0.661, 1,036) for the middle tertile and 0.576 (0.432, 0.767) for the highest tertile. Furthermore, compared with the lowest tertile, the highest tertile was associated with a delayed onset time of MCR of 0.484 (95% CI: 0.151, 0.817) years. Conclusion: A higher PEF was related to a lower prevalence of MCR and a lower risk for MCR, and a higher PEF also prolonged the onset time of MCR.

2.
J Pharm Pharmacol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173028

ABSTRACT

OBJECTIVES: To unveil the mechanism of the Bufei Huoxue formula (BHF) for chronic obstructive pulmonary disease (COPD) through integrated network pharmacology (NP) and experimental verification. METHODS: LC-MS was first applied to the analysis of both in vitro and in vivo samples from BHF for chemical profiling. Then a ligand library was prepared for NP to reveal the mechanism of BHF against COPD. Finally, verification was performed using an animal model related to the results from the NP. KEY FINDINGS: A ligand library containing 170 compounds from BHF was obtained, while 357 targets related to COPD were filtered to construct a PPI network. GO and KEGG analysis demonstrated that bavachin, paeoniflorin, and demethylation of formononetin were the major compounds for BHF against COPD, which mainly by regulating the PI3K/Akt pathway. The experiments proved that BHF could alleviate lung injury and attenuate the release of TNF-α and IL-6 in the lung and BALF in a dose-dependent manner. Western blot further demonstrated the down-regulated effect of BHF on p-PI3K. CONCLUSION: BHF provides a potent alternative for the treatment of COPD, and the mechanism is probably associated with regulating the PI3K/AKT pathway to alleviate inflammatory injury by bavachin, paeoniflorin, and demethylation of formononetin.

3.
J Lipid Res ; : 100626, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173829

ABSTRACT

Atherosclerotic cardiovascular disease (ASCVD) is closely correlated with elevated low-density lipoprotein cholesterol (LDL-C). In feeding state, glucose and insulin activate mTORC1 that phosphorylates the deubiquitylase USP20. USP20 then stabilizes HMG-CoA reductase (HMGCR), thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles (LNPs) to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.

4.
Article in English | MEDLINE | ID: mdl-39158955

ABSTRACT

PURPOSE: This observational study aimed to investigate associations between dietary live microbe intake and mortality, as well as biological aging. METHODS: Adults from the 1999-2018 National Health and Nutrition Examination Survey were categorized into low, medium, and high dietary live microbe groups. Foods with medium and high live microbe content were aggregated into a medium-high consumption category. The outcomes included all-cause, cardiovascular, and cancer mortality, along with biological age (BA) acceleration assessed by the Klemera-Doubal method (KDM) and PhenoAge. Multiple regression analyses and mediation analyses were conducted to assess associations, adjusting for potential confounders. RESULTS: A total of 34,133 adults were included in our analyses. Over an average follow-up period of 9.92 years, 5,462 deaths occurred. In multivariate adjusted models, every 100 grams of medium-high group foods consumed was associated with reduced all-cause mortality (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.91 to 0.97, P < 0.001) and cardiovascular mortality (HR 0.91, 95% CI 0.86 to 0.96, P < 0.001), but not with cancer mortality (HR 1.01, 95% CI 0.95 to 1.07, P = 0.768). Every 100 grams medium-high group foods consumption was associated with decreased KDM BA acceleration (fully adjusted regression coefficient -0.09, 95% CI -0.15 to -0.04, P = 0.001) and PhenoAge acceleration (fully adjusted regression coefficient -0.07, 95% CI -0.11 to -0.03, P < 0.001). Mediation analysis showed that BA acceleration partially mediated live microbes-mortality associations. CONCLUSION: Our results suggest that higher dietary live microbe intake is associated with lower mortality risk and slower biological aging. However, further research is needed to verify these findings.

5.
3 Biotech ; 14(9): 202, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39157422

ABSTRACT

Synthetic dyes pose a significant environmental threat due to their complex structures and resistance to microbial degradation. S. commune 15R-5-F01 exhibited over 96% degradation efficiency of Methyl Red in a medium with 100 mg L-1 Methyl Red within 3 h. The fungus demonstrated adaptability to various environmental conditions, including different pH levels, temperatures, oxygen concentrations, salinity, and heavy metals. S. commune 15R-5-F01 is capable of achieving repeated cycles of Methyl Red reduction with sustained degradation duration minimum of 6 cycles. It showed a maximum Methyl Red biodegradation capacity of at least 558 mg g-1 dry mycelia and a bioadsorption capacity of 57 mg g-1. Gas chromatography-mass spectrometry analysis confirmed the azo reduction of Methyl Red into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Enzymatic activity assays indicated the involvement of lignin peroxidases, laccases, and manganese peroxidase in the biodegradation process. Phytotoxicity tests on Triticum eastivum, Oryza sativa, and Vigna umbellata seeds revealed reduced toxicity of the degradation products compared to Methyl Red. This study identifies S. commune 15R-5-F01 as a viable candidate for the sustainable degradation of synthetic dyes in industrial wastewater.

6.
ACS Sens ; 9(8): 4069-4078, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39136380

ABSTRACT

Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.


Subject(s)
Metal-Organic Frameworks , Zinc , Metal-Organic Frameworks/chemistry , Ligands , Stereoisomerism , Zinc/chemistry , Electrochemical Techniques/methods , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Hydrogen Bonding
7.
Article in English | MEDLINE | ID: mdl-39165085

ABSTRACT

Currently, inhomogeneous distribution of Zn2+ on the surface of the Zn anode is still the essential reason for dendrite formation and unsatisfactory stability of zinc ion batteries. Given the merits of strong interaction between Sn and Zn, as well as a low nucleation barrier during Zn deposition, the combination of metallic Sn with carbon material is expected to improve the deposition of zinc ions and inhibit the growth of zinc dendrites by guiding the homogeneous plating/stripping of zinc on the electrode surface. In this article, zincophilic Sn nanoparticles with low nucleation barriers and strong interaction with Zn2+ were embedded into 3D N-doped carbon nanofibers using a simple electrostatic spinning technique. Accordingly, when serving as an artificial coating layer for the zinc metal anode, an ultrastable Sn@NCNFs@Zn||Sn@NCNFs@Zn symmetric cell can be achieved for over 3500 h with a low nucleation overpotential of 29.1 mV. Significantly, the full cell device assembled with the as-prepared anode and MnO2 cathode exhibits desirable electrochemical behaviors. Moreover, this simple method could be extended to other metal-carbon composites, and to ensure ease in scaling up as required. Such significant approach can provide an effective strategy for the design of high-performance zinc anodes.

8.
J Neurooncol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117967

ABSTRACT

PURPOSE: This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS: Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS: Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-ß signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION: Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.

9.
Pest Manag Sci ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118390

ABSTRACT

BACKGROUND: Owing to large amounts of synthetic pesticides being extensively and unreasonably used for crop protection, currently, resistance and negative impacts on human health and environment safety have appeared. Therefore, development of potential pesticide candidates is highly urgent. Herein, a series of ester derivatives of osthole were designed and synthesized as pesticidal agents. RESULTS: Six spatial configurations of 4'-(p-toluenoyloxy)osthole (4b), 4'-(m-fluorobenzoyloxy)osthole (4f), 4'-(p-fluorophenylacetyloxy)osthole (4m), 4'-(3'',4''-methylenedioxybenzoyloxy)osthole (4q), 4'-formyloxyosthole (4u) and 4'-acetyloxyosthole (4v) were determined by X-ray mono-crystal diffraction. Compounds 4b, 4'-(p-chlorobenzoyloxy)osthole (4g), 4'-(m-chlorobenzoyloxy)osthole (4h), 4'-(p-bromobenzoyloxy)osthole (4i) and 4'-(2''-chloropyridin-3''-ylcarbonyloxy)osthole (4p) showed higher insecticidal activity than toosendanin against Mythimna separata Walker; notably, compound 4b displayed 1.8 times insecticidal activity of the precursor osthole. Against Tetranychus cinnabarinus Boisduval, compounds 4g and 4h showed 3.3 and 2.6 times acaricidal activity of osthole, and good control effects in the glasshouse. Scanning electron microscopy assay demonstrated that compound 4g can damage the cuticle layer of T. cinnabarinus resulting in death. CONCLUSION: Compounds 4g and 4h can be further studied as lead pesticidal agents for the management of M. separata and T. cinnabarinus. These results will pave the way for application of osthole derivatives as agrochemicals. © 2024 Society of Chemical Industry.

10.
Forensic Sci Int ; 362: 112148, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094222

ABSTRACT

Recently, RNA markers have been used to identify tissue origins of different kinds of body fluids. Herein, circRNA and miRNA markers were carried out to examine the presence or absence of peripheral blood (PB) in bloodstained samples exposed to different external environmental conditions, which mimicked PB samples left at the crime scenes. PB samples were placed on sterile swabs and then exposed to different high temperatures (37°C, 55°C and 95°C) and ultraviolet light irradiation for 0 d, 0.5 d, 1 d, 3 d, and 7 d, ultra-low and low temperatures (-80°C, -20°C, and 4°C) for 30 d, 180 d and 365 d and different kinds of disinfectants. Total RNA was extracted from bloodstained samples under the above different conditions, and the expressions of target RNAs (including miR16-5p, miR451a, circ0000095, and two reference genes RNU6b and 18 S rRNA) were detected by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. Results showed that these selected RNA markers could be successfully measured at all observation points with their unique degradation rates, which exhibited relative stability in degraded bloodstained samples exposed to different environmental conditions. This study provides insights into the applications of these studied miRNA and circRNA markers in forensic science.


Subject(s)
Blood Stains , MicroRNAs , Real-Time Polymerase Chain Reaction , Ultraviolet Rays , Humans , RNA Stability , Specimen Handling/methods , RNA, Circular/genetics , Disinfectants , Genetic Markers , Forensic Genetics/methods , Cold Temperature , Reverse Transcriptase Polymerase Chain Reaction , Temperature , Hot Temperature
11.
Chem Sci ; 15(32): 13041-13048, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39148785

ABSTRACT

Herein, a catalytic photoredox-neutral strategy for alkyne deuterocarboxylation with tetrabutylammonium oxalate as the carbonyl source and D2O as the deuteration agent was described. For the first time, the oxalic salt acted as both the reductant and carbonyl source through single electron transfer and subsequential homolysis of the C-C bond. The strongly reductive CO2 radical anion species in situ generated from oxalate played significant roles in realizing the global deuterocarboxylation of terminal and internal alkynes to access various tetra- and tri-deuterated aryl propionic acids with high yields and deuteration ratios.

13.
Spine J ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154943

ABSTRACT

BACKGROUND: Proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) are common complications observed after adult spinal deformity (ASD) surgery and major cause for unplanned reoperations. In addition to spinal alignment, osteoporosis and paraspinal muscle (PSM) degeneration are reportedly indispensable factors that account for PJK/PJF. PURPOSE: To investigate the utility of the preoperative risk assessment model using MRI-based skeletomuscular metrics in predicting PJK and/or PJF(PJK/PJF) after ASD correction. STUDY DESIGN: Retrospective Case-Control study. PATIENT SAMPLE: Consecutive series of 149 patients at a single academic institution. OUTCOME MEASURES: MRI based measurements of vertebral bone quality at upper instrumented vertebra (VBQ-U) score and fat infiltration rate (FI%) of paraspinal muscle (PSM). METHODS: We performed a retrospective analysis of patients with ASD who underwent ≥5-segment fusion. The vertebral bone quality (VBQ) scoring system was used to assess the bone quality. The PSM quality including FI% and cross-sectional area (CSA) were evaluated. Multivariate logistic regression was performed to determine potential risk factors of PJK/PJF. RESULTS: Of 149 patients who underwent ASD surgery, PJK/PJF was found in 45(30.2%). Mean VBQ-U scores were 3.45 ± 0.64 and 3.00 ± 0.56 for patients with and without PJK/PJF (P<0.001). Mean FI% of PSM(L3/L4) was 27.9 ± 12.8 and 20.7 ± 13.3 for patients with and without PJK/PJF (P<0.001). On multivariate analysis, the VBQ-U score and FI% of PSM were significant independent predictors of PJK/PJF. The AUC for the novel risk assessment model is 0.806, with a predictive accuracy of 86.7%. CONCLUSION: In patients undergoing ASD correction, paraspinal muscle and vertebral bone quality significantly outweigh radiographic alignment parameters in predicting PJK/PJF. The MRI-based risk assessment model offers a valuable tool for early assessing individualized risk information for PJK/PJF.

14.
Chem Asian J ; : e202400812, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155272

ABSTRACT

Aqueous zinc-ion batteries have become a promising energy storage battery due to high theoretical specific capacity, abundant zinc resources and low cost. However, zinc dendrite growth and hydrogen evolution reaction limit their application. This study aims to improve the cycling performance and stability of aqueous zinc-ion batteries by improving the gel electrolyte. Polyacrylamide (PAM) is selected as the base material of the gel electrolyte, which has good stability and safety, but the water retention capacity, Zn2+ migration number, and ionic conductivity of PAM are low, which affects the long-term stability of the battery. In response to these problems, we optimized PAM by chemical cross-linking method, and formed an enhanced PAM gel by adding disodium citrate dihydrate (SC). Experimental results show that the introduction of an appropriate amount of SC in the enhanced PAM gel electrolyte can significantly improve its electrochemical performance. The zinc-ion symmetric battery achieved a stable cycle of more than 2100 hours at a current density of 0.5 mA cm-2, which is mainly attributed to the inhibitory effect of the enhanced PAM gel on zinc dendrite growth and hydrogen evolution reaction. This study provides a new direction for the development and application of flexible zinc-ion batteries.

15.
Acad Radiol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39174359

ABSTRACT

RATIONALE AND OBJECTIVE: There is a notable absence of robust evidence on the efficacy of ultrasound-based breast cancer screening strategies, particularly in populations with a high prevalence of dense breasts. Our study addresses this gap by evaluating the effectiveness of such strategies in Chinese women, thereby enriching the evidence base for identifying the most efficacious screening approaches for women with dense breast tissue. METHODS: Conducted from October 2018 to August 2022 in Central China, this prospective cohort study enrolled 8996 women aged 35-64 years, divided into two age groups (35-44 and 45-64 years). Participants were screened for breast cancer using hand-held ultrasound (HHUS) and automated breast ultrasound system (ABUS), with the older age group also receiving full-field digital mammography (FFDM). The Breast Imaging Reporting and Data System (BI-RADS) was employed for image interpretation, with abnormal results indicated by BI-RADS 4/5, necessitating a biopsy; BI-RADS 3 required follow-up within 6-12 months by primary screening strategies; and BI-RADS 1/2 were classified as negative. RESULTS: Among the screened women, 29 cases of breast cancer were identified, with 4 (1.3‰) in the 35-44 years age group and 25 (4.2‰) in the 45-64 years age group. In the younger age group, HHUS and ABUS performed equally well, with no significant difference in their AUC values (0.8678 vs. 0.8679, P > 0.05). For the older age group, ABUS as a standalone strategy (AUC 0.9935) and both supplemental screening methods (HHUS with FFDM, AUC 0.9920; ABUS with FFDM, AUC 0.9928) outperformed FFDM alone (AUC 0.8983, P < 0.05). However, there was no significant difference between HHUS alone and FFDM alone (AUC 0.9529 vs. 0.8983, P > 0.05). CONCLUSION: The findings indicate that both HHUS and ABUS exhibit strong performance as independent breast cancer screening strategies, with ABUS demonstrating superior potential. However, the integration of FFDM with these ultrasound techniques did not confer a substantial improvement in the overall effectiveness of the screening process.

16.
Angew Chem Int Ed Engl ; : e202407222, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166361

ABSTRACT

Skeletal editing of the core structure of heterocycles offers new opportunities for chemical construction and is a promising yet challenging research topic that has recently gained increasing interest. However, several limitations of the reported systems remain to be addressed. For example, the reagents employed are generally in high-energy, such as chlorocarbene precursors, nitrene species, and metal carbenes, which are also associated with low atomic efficiencies. Thus, the development of simple systems for the skeletal editing of heterocycles is still desired. Herein, a straightforward and facile BH3-mediated skeletal editing of readily available indoles, benzimidazoles, and several other aromatic heterocycles is reported. Structurally diverse products were readily obtained, including tetrahydrobenzo azaborinines, diazaboroles, O-anilinophenylethyl alcohols, benzene-1,2-diamines, and more. Density functional theory (DFT) calculations and natural bond orbital (NBO) analysis revealed a BH3-induced C-N bond cleavage reaction pathway. An exciting and counterintuitive indole hydroboration phenomenon of -BH2 shift from C3-position to C2-position was disclosed. Moreover, the photophysical properties of the synthesized diazaboroles were studied, and an interestingly and pronounced aggregation-induced emission (AIE) behavior was disclosed.

17.
Acta Pharmacol Sin ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160244

ABSTRACT

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 µM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-ß/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.

18.
Front Public Health ; 12: 1420608, 2024.
Article in English | MEDLINE | ID: mdl-39104885

ABSTRACT

Introduction: Heatstroke is a serious clinical condition caused by exposure to high temperature and high humidity environment, which leads to a rapid increase of the core temperature of the body to more than 40°C, accompanied by skin burning, consciousness disorders and other organ system damage. This study aims to analyze the effect of meteorological factors on the incidence of heatstroke using machine learning, and to construct a heatstroke forecasting model to provide reference for heatstroke prevention. Methods: The data of heatstroke incidence and meteorological factors in a city in South China from May to September 2014-2019 were analyzed in this study. The lagged effect of meteorological factors on heatstroke incidence was analyzed based on the distributed lag non-linear model, and the prediction model was constructed by using regression decision tree, random forest, gradient boosting trees, linear SVRs, LSTMs, and ARIMA algorithm. Results: The cumulative lagged effect found that heat index, dew-point temperature, daily maximum temperature and relative humidity had the greatest influence on heatstroke. When the heat index, dew-point temperature, and daily maximum temperature exceeded certain thresholds, the risk of heatstroke was significantly increased on the same day and within the following 5 days. The lagged effect of relative humidity on the occurrence of heatstroke was different with the change of relative humidity, and both excessively high and low environmental humidity levels exhibited a longer lagged effect on the occurrence of heatstroke. With regard to the prediction model, random forest model had the best performance of 5.28 on RMSE and dropped to 3.77 after being adjusted. Discussion: The incidence of heatstroke in this city is significantly correlated with heat index, heatwave, dew-point temperature, air temperature and zhongfu, among which the heat index and dew-point temperature have a significant lagged effect on heatstroke incidence. Relevant departments need to closely monitor the data of the correlated factors, and adopt heat prevention measures before the temperature peaks, calling on citizens to reduce outdoor activities.


Subject(s)
Heat Stroke , Machine Learning , Meteorological Concepts , Humans , Heat Stroke/epidemiology , Heat Stroke/etiology , China/epidemiology , Incidence , Forecasting , Cities , Hot Temperature/adverse effects , Humidity
19.
Shanghai Kou Qiang Yi Xue ; 33(3): 255-259, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104339

ABSTRACT

PURPOSE: To investigate the effect of Sophora japonica extract on alveolar bone mass in ovariectomized osteoporosis mice. METHODS: Six-week-old female non-pregnant wild-type C57BL/6J mice were randomly divided into sham operation group, ovariectomy(OVX) group and OVX+Sophora japonica extract group. Ovaries of the mice in the OVX group and the OVX+Sophora japonica extract group were removed, and the mice in the OVX+Sophora japonica extract group were treated by Sophora japonica extract at a dose of 150 mg/kg, three times a week for 4 weeks; while mice of the other two groups were given an equal volume of normal saline at the same time. Body weight was measured 3 times a week, and the micro-parameters of alveolar bone were detected by Micro-CT after 4 weeks. The data were analyzed by GraphPad Prism 9 software. RESULTS: Compared with the sham-operated group, the trabecular bone parameters of the alveolar bone in the OVX group were significantly decreased 1 month after operation (P<0.05). One month after intervention with Sophora japonica extract, alveolar bone mineral density (BMD), trabecular number (Tb.N) and trabecular separation(Tb.Sp) in OVX mice was significantly rescued, with no significant difference compared to the sham surgery group(P>0.05); but bone volume fraction(BV/TV) and trabecular thickness (Tb.Th) had not completely recovered to the levels of the sham-operated group(P<0.05). CONCLUSIONS: Sophora japonica extract can effectively increase the alveolar bone mass reduced by estrogen deficiency and may be used as one of the potential drugs for the treatment of menopausal alveolar bone osteoporosis.


Subject(s)
Bone Density , Mice, Inbred C57BL , Osteoporosis , Ovariectomy , Plant Extracts , Sophora japonica , Animals , Female , Mice , Bone Density/drug effects , Osteoporosis/drug therapy , Plant Extracts/pharmacology , Sophora japonica/chemistry , X-Ray Microtomography
20.
Int J Biol Macromol ; 278(Pt 1): 134299, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097047

ABSTRACT

Quorum sensing (QS) is a cellular communication mechanism in which bacteria secrete and recognize signaling molecules to regulate group behavior. Lipases provide energy for bacterial cell growth but it is unknown whether they influence nutrient-dependent QS by hydrolyzing substrate. A high-yield lipase-producing strain, Burkholderia pyrrocinia WZ10-3, was previously identified in our laboratory, but the composition of its crude enzymes was not elucidated. Here, we identified a key extracellular lipase, Lip1728, in WZ10-3, which accounts for 99 % of the extracellular lipase activity. Lip1728 prefers to hydrolyze triglycerides at sn-1,3 positions, with pNP-C16 being its optimal substrate. Lip1728 exhibited activity at pH 5.0-10.0 and regardless of the presence of metal ions. It had strong resistance to sodium dodecyl sulfate and short-chain alcohols and was activated by phenylmethanesulfonylfluoride (PMSF). Lip1728 knockout significantly affected lipid metabolism and biofilm formation in the presence of olive oil. Finally, oleic acid, a hydrolysate of Lip1728, influenced the production of the signal molecule N-acyl homoserine lactone (AHL) and biofilm formation by downregulating the AHL synthetase gene pyrI. In conclusion, Lip1728, as a key extracellular lipase in B. pyrrocinia WZ10-3, exhibits superior properties that make it suitable for biodiesel production and plays a crucial role in QS.

SELECTION OF CITATIONS
SEARCH DETAIL