Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
Front Pharmacol ; 15: 1389187, 2024.
Article En | MEDLINE | ID: mdl-38601471

Patients with systemic autoimmune rheumatic diseases are at a high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and effective antiviral treatments including nirmatrelvir/ritonavir can improve their outcomes. However, there might be potential drug-drug interactions when these patients take nirmatrelvir/ritonavir together with immunosuppressants with a narrow therapeutic window, such as tacrolimus and cyclosporine. We present a case of paralytic ileus resulting from tacrolimus toxicity mediated by the use of nirmatrelvir/ritonavir in a patient with systemic lupus erythematosus (SLE). A 37-year-old female SLE patient was prescribed nirmatrelvir/ritonavir without discontinuing tacrolimus. She presented to the emergency room with symptoms of paralytic ileus including persistent abdominal pain, nausea, and vomiting, which were verified to be associated with tacrolimus toxicity. The blood concentration of tacrolimus was measured >30 ng/mL. Urgent medical intervention was initiated, while tacrolimus was withheld. The residual concentration was brought within the appropriate range and tacrolimus was resumed 8 days later. Physicians must be aware of the potential DDIs when prescribing nirmatrelvir/ritonavir, especially to those taking immunosuppresants like tacrolimus.

2.
Toxicol Lett ; 396: 81-93, 2024 May 15.
Article En | MEDLINE | ID: mdl-38670245

PURPOSE: Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS: UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS: UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION: This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.


Cardiomyopathies , Indican , Myocytes, Cardiac , Rats, Sprague-Dawley , Reactive Oxygen Species , Receptors, Aryl Hydrocarbon , Signal Transduction , Uremia , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Reactive Oxygen Species/metabolism , Uremia/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Indican/toxicity , Humans , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Rats , Male , Cell Line , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Oxidative Stress , Disease Models, Animal , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
3.
Clin. transl. oncol. (Print) ; 26(3): 630-643, mar. 2024.
Article En | IBECS | ID: ibc-230793

Purpose Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. Methods Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. Results The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. Conclusions Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy (AU)


Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Immunotherapy/methods , Biomarkers/blood , Fatty Acids , Prognosis
4.
Angew Chem Int Ed Engl ; : e202318782, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38354089

High performance solution-processable deep-blue emitters with a Commission International de l'Eclairage (CIE) coordinate of CIEy≤0.08 are highly desired in ultrahigh-definition display. Although, deep-blue materials with hybridized local and charge-transfer (HLCT) excited-state feature are promising candidates, their rigidity and planar molecular structures limit their application in solution-processing technique. Herein, four novel deep-blue solution-processable HLCT emitters were first proposed by attaching rigid imide aliphatic rings as functional units onto the HLCT emitting core. The functional units not only improve solubility, enhance thermal properties and morphological stability of the emitting core, but also promote photoluminescence efficiency, balance charge carrier transport, and inhibit aggregation-caused quenching effect due to the weak electron-withdrawing property as well as steric hindrance. The corresponding solution-processable organic light-emitting diodes (OLEDs) substantiate an unprecedented maximum external quantum efficiency (EQEmax) of 11.5 % with an emission peak at 456 nm and excellent colour purity (full width at half maximum=56 nm and CIEy=0.09). These efficiencies represent the state-of-the-art device performance among the solution-processable blue OLEDs based on the "hot exciton" mechanism. This simple strategy opens up a new avenue for designing highly efficient solution-processable deep-blue organic luminescent materials.

5.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Article En | MEDLINE | ID: mdl-38360192

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Diptera , Gastrointestinal Microbiome , Animals , Larva/microbiology , Astacoidea , Aeromonas hydrophila/genetics , Antimicrobial Peptides , Antioxidants , Diet , Gene Expression , Anti-Bacterial Agents
6.
J Cancer ; 15(3): 809-824, 2024.
Article En | MEDLINE | ID: mdl-38213725

Background: Colorectal cancer (CRC) is one of the most common malignant tumors and has high morbidity and mortality rates. Previous studies have shown that TSPEAR mutations are involved in the development and progression of gastric cancer and liver cancer. However, the role of TSPEAR in CRC is still unclear. Methods: In The Cancer Genome Atlas (TCGA) database, 590 CRC patients with complete survival information were analyzed. We assessed TSPEAR expression in a pan-cancer dataset from the TCGA database. Cox regression analysis was performed to evaluate factors associated with prognosis. Enrichment analysis via the R package "clusterProfiler" was used to explore the potential function of TSPEAR. The single-sample GSEA (ssGSEA) method from the R package "GSVA" and the TIMER database were used to investigate the association between the immune infiltration level and TSPEAR expression in CRC. The R package "maftools" was used to explore the association between tumour mutation burden (TMB) and TSPEAR expression in CRC. CCK-8 assays and cell invasion assays were used to detect the effect of TSPEAR and TGIF2 on the biological behavior of CRC cells. Results: Pan-cancer analysis revealed that TSPEAR was upregulated in CRC tissues compared to normal tissues and that high TSPEAR expression was associated with poorer overall survival (OS) (p=0.0053). The expression of TSPEAR increased with increasing TNM stage, T stage, N stage, and M stage. The nomogram constructed with TSPEAR, age, and TNM stage showed better predictive value than TSPEAR, age, or TNM stage alone. Immune cell infiltration analysis revealed that high expression of TSPEAR was associated with lower immune cell infiltration. Tumor mutation burden (TMB) analysis indicated that high expression of TSPEAR was associated with lower TMB (p=0.005), and high TMB was associated with shorter OS (p=0.02). CCK-8 assays and cell invasion assays indicated that in vitro knockdown of TSPEAR inhibited the proliferation, migration, and invasion of CRC cells. In addition, TSPEAR expression may be regulated by the upstream transcription factor TGIF2. Conclusion: TSPEAR expression was higher in CRC tissues than in normal tissues. Its upregulation was significantly associated with a poor prognosis. Additionally, TSPEAR plays a significant role in tumor immunity and the biological behavior of CRC cells. Thus, TSPEAR may become a promising prognostic biomarker and therapeutic target for CRC patients.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 1-14, 2024 Jan 25.
Article Zh | MEDLINE | ID: mdl-38258628

The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.


Light , Luminescence , Fluorescence , Eukaryota , Green Light
8.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Article En | MEDLINE | ID: mdl-38185392

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Ammonia , Gastropoda , Animals , Diet , Antioxidants/metabolism , Gastropoda/metabolism , Immunity, Innate , Gene Expression , Muscles/metabolism , Superoxide Dismutase/metabolism , Animal Feed/analysis , Dietary Supplements , Xanthophylls
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123822, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38176193

Fluoride ion is not only important for dental health, but also a contributing factor in a variety of diseases. At the same time, fluoride ions and cell viscosity are both important to the physiological environment of mitochondria. We developed a dual-response ratiometric fluorescent probe BDF based on Förster resonance energy transfer (FRET) and intramolecular charge transfer (ICT) mechanism for the detection of F- and viscosity. BDF has an outstanding intramolecular energy transfer efficiency of 97.7% and shows excellent performance for fluorine ion detection. In addition, when the system viscosity increases, the fluorescence emission intensity of BDF is greatly heightened, indicating the possibility of viscosity detection. Finally, based on the fluorescence properties of BDF, we used the probe to detect F- in the toothpaste sample and image exogenous fluoride ions in HeLa cells.


Fluorescence Resonance Energy Transfer , Fluorides , Humans , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , HeLa Cells , Fluorine , Viscosity
10.
Bioact Mater ; 34: 466-481, 2024 Apr.
Article En | MEDLINE | ID: mdl-38292412

Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.

11.
Clin Transl Oncol ; 26(3): 630-643, 2024 Mar.
Article En | MEDLINE | ID: mdl-37480430

PURPOSE: Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS: Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS: The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS: Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.


Colonic Neoplasms , Humans , Prognosis , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Immunotherapy , Biomarkers , Fatty Acids
12.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Article En | MEDLINE | ID: mdl-38104697

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Chitosan , Gastrointestinal Microbiome , Animals , Astacoidea , Chitosan/pharmacology , Diet , Dietary Supplements/analysis , Superoxide Dismutase/metabolism , Oligosaccharides/pharmacology , Immunity, Innate , Animal Feed/analysis
13.
iScience ; 26(11): 108211, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37942007

Adherens junctions between tubular epithelial cells are disrupted in renal ischemia/reperfusion (I/R) injury. Syndecan-1 (SDC-1) is involved in maintaining cell morphology. We aimed to study the role of SDC-1 shedding induced by renal I/R in the destruction of intracellular adherens junctions. We found that SDC-1 shedding was increased while the expression of E-cadherin was decreased. This observation was accompanied by the activation of STAT3 in the kidneys. Inhibiting the shedding of SDC-1 induced by I/R could alleviate this effect. Mild renal I/R could induce more severe renal injury, lower E-cadherin expression, damaged cell junctions, and activated STAT3 in knockout mice with the tubule-specific deletion of SDC-1 mice. The results in vitro were consistent with those in vivo. Inhibiting the shedding of SDC-1 could alleviate the decreased expression of E-cadherin and damage of cell adherens junctions through inhibiting the activation of STAT3 during ischemic acute kidney injury.

14.
Front Public Health ; 11: 1281787, 2023.
Article En | MEDLINE | ID: mdl-38026268

Introduction: In the middle of December 2022, the Chinese government adjusted the lockdown policy on coronavirus disease 2019 (COVID-19), a large number of infected patients flooded into the emergency department. The emergency medical staff encountered significant working and mental stress while fighting the COVID-19 pandemic. We aimed to investigate the workload change, and the prevalence and associated factors for depression symptoms among emergency medical staff after the policy adjustment. Methods: We conducted a cross-sectional online survey of emergency medical staff who fought against COVID-19 in Shandong Province during January 16 to 31, 2023. The respondents' sociodemographic and work information were collected, and they were asked to complete the 9-item Patient Health Questionnaire (PHQ-9) then. Univariate and multivariate logistic regression analyses were applied to identify the potential associated factors for major depression. Results: Nine hundred and sixteen emergency medical personnel from 108 hospitals responded to this survey. The respondents' weekly working hours (53.65 ± 17.36 vs 49.68 ± 14.84) and monthly night shifts (7.25 ± 3.85 vs 6.80 ± 3.77) increased after the open policy. About 54.3% of the respondents scored more than 10 points on the PHQ-9 standardized test, which is associated with depressive symptoms. In univariate analysis, being doctors, living with family members aged ≤16 or ≥ 65 years old, COVID-19 infection and increased weekly working hours after the open policy were significantly associated with a PHQ-9 score ≥ 10 points. In the multivariate analysis, only increased weekly working hours showed significant association with scoring ≥10 points. Conclusion: Emergency medical staff' workload had increased after the open policy announcement, which was strongly associated with a higher PHQ-9 scores, indicating a very high risk for major depression. Emergency medical staff working as doctors or with an intermediate title from grade-A tertiary hospitals had higher PHQ-9 scores, while COVID-19 infection and weekly working hours of 60 or more after the open policy were associated with higher PHQ-9 scores for those from grade-B tertiary hospitals. Hospital administrators should reinforce the importance of targeted emergency medical staff support during future outbreaks.


COVID-19 , Humans , Aged , COVID-19/epidemiology , Cross-Sectional Studies , Workload , Depression/epidemiology , SARS-CoV-2 , Pandemics , Communicable Disease Control , Medical Staff
15.
BMC Cardiovasc Disord ; 23(1): 524, 2023 10 27.
Article En | MEDLINE | ID: mdl-37891475

BACKGROUND: The effects of surgical day (workdays or weekends) on occurrence and outcome of cardiac surgery associated -acute kidney injury (CSA-AKI) remains unclear. This study aimed to compare the incidence and short-term outcomes of CSA-AKI in patients undergoing surgery on workdays and weekends. MATERIALS AND METHODS: Patients who underwent cardiac surgery from July 2020 to December 2020 were retrospectively enrolled in this study. These patients were divided into a weekend group and workday group. The primary endpoint was the incidence of CSA-AKI. The secondary endpoints included renal function recovery and in-hospital mortality. The logistic regression model was used to explore the risk factors for CSA-AKI. Stratification analysis was performed to estimate the association between CSA-AKI and weekend surgery stratified by emergency surgery. RESULTS: A total of 1974 patients undergoing cardiac surgery were enrolled. The incidence of CSA-AKI in the weekend group was significantly higher than that in the workday group (42.8% vs. 34.7%, P = 0.038). Further analysis of patients with CSA-AKI showed that there was no difference in renal function recovery between the workday AKI group and weekend AKI group. There was no difference in in-hospital mortality between the weekend group and workday group (3.6% vs. 2.4%, P = 0.327); however, the in-hospital mortality of the weekend AKI group was significantly higher than that of the workday AKI group (8.5% vs. 2.9%, P = 0.014). Weekend surgery and emergency surgery were independent risk factors for CSA-AKI. The multiplicative model showed an interaction between weekend surgery and emergency surgery; weekend surgery was related to an increased risk of AKI among patients undergoing emergency surgery [adjusted OR (95% CI): 1.96 (1.012-8.128)]. CONCLUSIONS: The incidence of CSA-AKI in patients undergoing cardiac surgery on weekends was significantly higher compared to that in patients undergoing cardiac surgery on workdays. Weekend surgery did not affect the in-hospital mortality of all patients but significantly increased the mortality of AKI patients. Weekend surgery and emergency surgery were independent risk factors for CSA-AKI. Weekend emergency surgery significantly increased the risk of CSA-AKI.


Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Retrospective Studies , Incidence , Postoperative Complications/etiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Risk Factors , Cardiac Surgical Procedures/adverse effects
16.
Am J Cardiol ; 209: 29-35, 2023 12 15.
Article En | MEDLINE | ID: mdl-37839462

Oxidative stress has an integral role in the pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Glutathione peroxidase 3 (GPx3) is an important antioxidant enzyme in circulation and is mainly secreted by the kidney. This study aimed to evaluate the relation between GPx3 protein and CSA-AKI. This study is a nested case-control study in Zhongshan Hospital affiliated with Fudan University. We examined serum samples from 80 CSA-AKI patients and 80 age- and gender-matched non-AKI patients who underwent cardiac surgery. AKI was defined according to Kidney Disease: Improving Global Outcomes (KDIGO) 2012 criteria. We measured serum GPx3 concentration using the enzyme-linked immunosorbent assay. GPx3 ratio is the ratio of preoperative and 6 hours postoperative of GPx3 protein concentration. We applied dose-response relation analyses to odds ratio in different GPx3 ratio levels and integrated it into the logistic model to predict the risk of AKI. The receiver operating characteristic curve and area under the curve (AUC) was used to assess the prediction models. Postoperative serum GPx3 concentrations were significantly lower in the AKI group compared with the non-AKI group (1.78 ± 0.33 vs 2.03 ± 0.27, p <0.001). Malondialdehyde was higher in the AKI than in the non-AKI group (17.74 ± 8.65 vs 7.48 ± 4.59, p <0.001). The AKI risk increased in a dose-dependent manner, which was flat in the first half of the GPx3 ratio and then tended to be faster. The peaking odds ratio of CSA-AKI was 2.615 at the GPx3 ratio of 1.21 to 1.40. The AUC value to predict CSA-AKI only included the GPx3 ratio was 72.3%. After gradually integrating other covariates (body mass index, aortic crossclamp time, and cardiopulmonary bypass), the model showed an AUC of 82.6%. The serum GPx3 concentration was significantly lower in the CSA-AKI group. GPx3 ratio has a good predictive value for CSA-AKI, which may be a potential early diagnostic marker for AKI.


Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Case-Control Studies , Cardiac Surgical Procedures/adverse effects , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Kidney , Glutathione Peroxidase , Postoperative Complications/epidemiology , Risk Factors , Retrospective Studies
17.
Animals (Basel) ; 13(17)2023 Aug 26.
Article En | MEDLINE | ID: mdl-37684985

Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS), Rhodopseudomonas palustris (RP), Saccharomyces cerevisiae (SC) and Lactobacillus plantarum (LP) were selected as feed additives for black soldier fly (Hermetia illucens) by tracking the growth performance, proximate composition, digestive ability and antibacterial peptides (AMPs) content in the first trial. Microorganism efficiency screening results showed that RP could improve growth performance, digestive ability and AMP content of H. illucens. Therefore, RP was selected to prepare the diets and was incorporated into diets for H. illucens at levels of 0 (R0), 1.22 × 106 (R1), 1.22 × 107 (R2), 1.22 × 108 (R3), 1.22 × 109 (R4) and 1.22 × 1010 (R5) CFU/g. After 5 d of feeding, larvae fed the R2-R5 diets had higher weight gain and specific growth rates. Different concentrations of RP had no significant effect on larval body composition. R4-R5 could improve the digestibility and expression of AMPs in larvae. Moreover, RP could significantly increase the abundance of Lactobacillus and Rhodopseudomonas and decrease the abundance of Proteus and Corynebacterium. Therefore, RP is superior to the other strains as a feed additive for H. illucens larvae, and we recommend the addition of 1.22 × 109-1.22 × 1010 CFU/g RP to promote the growth and AMP content of H. illucens.

18.
ACS Appl Mater Interfaces ; 15(35): 41793-41805, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37616220

Colorless polyimides (CPIs) are a key substrate material for flexible organic light-emitting diode (OLED) displays and have attracted worldwide attention. Here, in this paper, the dispersion and interfacial interaction of aromatic polyamide (PA) in CPI (synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB)) were significantly improved by in situ polymerization, and colorless transparent macromolecular polyimide composites (CPI-PAx) were successfully prepared by PA and CPI. By adjusting the ratio of PA to CPI, a high-performance engineering plastic with excellent film-forming properties was obtained. Molecular simulations confirmed the uniform distribution of PA in CPI and its interaction in polymers. In CPI-PAx, the CPI was locked by the PA chain, and numerous molecular chains were mutually entangled to form a hydrogen-bond network structure. Due to the strong interaction between the chains imparted by the hydrogen bonds of the PA, they do not slide under external forces and heating. In addition, the additive PA has excellent dimensional stability, thermal, and mechanical properties, and CPI has outstanding optical properties, so the synthesized CPI-PAx combines the comprehensive properties of PA and CPI. The CPI-PAx has excellent thermal and mechanical properties, with a thermal decomposition temperature of 499 °C, a glass transition temperature of 385 °C, a coefficient of thermal expansion of 0.8 ppm K-1, a tensile strength of 50.9 MPa, and an elastic modulus of 3.9 GPa. Particularly, CPI-PAx has a 90% transmittance in the visible region. These data prove that the strategy of combining PA and CPI by in situ polymerization is an effective method to circumvent the bottleneck of CPI in the current flexible window application, and this design strategy is universal.

19.
J Hazard Mater ; 460: 132317, 2023 10 15.
Article En | MEDLINE | ID: mdl-37619275

The deficiency of essential mineral nutrients caused by xenobiotics often results in plant mortality or an inability to complete its life cycle. Imazethapyr, a widely utilized imidazolinone herbicide, has a long-lasting presence in the soil-plant system and can induce toxicity in non-target plants. However, the effects of imazethapyr on mineral nutrient homeostasis remain poorly comprehended. In this study, Arabidopsis seedlings exposed to concentrations of 4 and 10 µg/L imazethapyr showed noticeable reductions in shoot development and displayed a distinct dark purple color, which is commonly associated with phosphorus (P) deficiency in crops. Additionally, the total P content in both the shoots and roots of Arabidopsis significantly decreased following imazethapyr treatment when compared to the control groups. Through the complementary use of physiological and molecular analyses, we discovered that imazethapyr hinders the abundance and functionality of inorganic phosphorus (Pi) transporters and acid phosphatase. Furthermore, imazethapyr impairs the plant's Pi-deficiency adaptation strategies, such as inhibiting Pi transporter activities and impeding root hair development, which ultimately exacerbate P starvation. These results provide compelling evidence that residues of imazethapyr have the potential to disrupt plant P homeostasis and acquisition strategies. These findings offer valuable insights for risk assessment and highlight the need to reconsider the indiscriminate use of imazethapyr, particularly under specific scenarios such as nutrient deficiency.


Arabidopsis , Phosphorus , Crops, Agricultural , Homeostasis
20.
Front Cell Infect Microbiol ; 13: 1173505, 2023.
Article En | MEDLINE | ID: mdl-37465759

The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.


Host Microbial Interactions , Inflammasomes , Virus Diseases , Viruses , Humans , Inflammasomes/immunology , Virus Diseases/immunology , Virus Diseases/therapy , Viruses/immunology , Host Microbial Interactions/immunology , Animals
...