Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 468
Filter
1.
Microbiome ; 12(1): 149, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123272

ABSTRACT

BACKGROUND: Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS: Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS: This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.


Subject(s)
Metagenome , Phylogeny , Genome, Bacterial , Geologic Sediments/microbiology , Genomics , Seawater/microbiology , Aquatic Organisms/genetics , Secondary Metabolism , Metagenomics
2.
Cell Stem Cell ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39181129

ABSTRACT

While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.

4.
Nature ; 631(8021): 601-609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987587

ABSTRACT

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Subject(s)
Allergens , Brain Stem , Bronchial Hyperreactivity , Dopamine beta-Hydroxylase , Lung , Neurons , Animals , Female , Male , Mice , Allergens/immunology , Asthma/immunology , Asthma/physiopathology , Brain Stem/cytology , Brain Stem/physiology , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Interleukin-4/immunology , Lung/drug effects , Lung/immunology , Lung/innervation , Lung/physiopathology , Mast Cells/immunology , Neurons/enzymology , Neurons/physiology , Norepinephrine/antagonists & inhibitors , Norepinephrine/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Ganglia, Autonomic/cytology , Dopamine beta-Hydroxylase/metabolism
5.
Appl Microbiol Biotechnol ; 108(1): 428, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066795

ABSTRACT

Acinetobacter baumannii, which is resistant to multiple drugs, is an opportunistic pathogen responsible for severe nosocomial infections. With no antibiotics available, phages have obtained clinical attention. However, since immunocompromised patients are often susceptible to infection, the appropriate timing of administration is particularly important. During this research, we obtained a lytic phage vB_AbaM_P1 that specifically targets A. baumannii. We then assessed its potential as a prophylactic treatment for lung infections caused by clinical strains. The virus experiences a period of inactivity lasting 30 min and produces approximately 788 particles during an outbreak. Transmission electron microscopy shows that vB_AbaM_P1 was similar to the Saclayvirus. Based on the analysis of high-throughput sequencing and bioinformatics, vB_AbaM_P1 consists of 107537 bases with a G + C content of 37.68%. It contains a total of 177 open reading frames and 14 tRNAs. No antibiotic genes were detected. In vivo experiments, using a cyclophosphamide-induced neutrophil deficiency model, tested the protective effect of phage on neutrophil-deficient rats by prophylactic application of phage. The use of phages resulted in a decrease in rat mortality caused by A. baumannii and a reduction in the bacterial burden in the lungs. Histologic examination of lung tissue revealed a decrease in the presence of immune cells. The presence of phage vB_AbaM_P1 had a notable impact on preventing A. baumannii infection, as evidenced by the decrease in oxidative stress in lung tissue and cytokine levels in serum. Our research offers more robust evidence for the early utilization of bacteriophages to mitigate A. baumannii infection. KEY POINTS: •A novel Saclayvirus phage infecting A. baumannii was isolated from sewage. •The whole genome was determined, analyzed, and compared to other phages. •Assaying the effect of phage in preventing infection in neutrophil-deficient models.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Genome, Viral , Acinetobacter baumannii/virology , Acinetobacter baumannii/genetics , Animals , Acinetobacter Infections/prevention & control , Acinetobacter Infections/microbiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Rats , Phage Therapy/methods , Base Composition , Disease Models, Animal , Genomics , High-Throughput Nucleotide Sequencing , Lung/virology , Lung/microbiology , Pneumonia/prevention & control , Pneumonia/microbiology , Pneumonia/virology , Male
6.
Sci Transl Med ; 16(754): eadi6887, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959328

ABSTRACT

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.


Subject(s)
COVID-19 , Class Ib Phosphatidylinositol 3-Kinase , Inflammation , SARS-CoV-2 , Animals , Humans , Mice , Capillary Permeability/drug effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , COVID-19/pathology , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Inflammation/pathology , Lung/pathology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred C57BL , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , SARS-CoV-2/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/pathology
7.
Aging Clin Exp Res ; 36(1): 150, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060791

ABSTRACT

BACKGROUND: Fine particular matter (PM2.5) has been associated with dementia, but limited information is available regarding the association between PM2.5 components and dementia. AIMS: We aimed to identify the major components of PM2.5 that affect cognitive function to further investigate its mechanism of action, and develop a prevention strategy for dementia. METHODS: In this study, we included 7804 participants aged ≥ 60 years recruited from seven counties in Zhejiang province, eastern China. The participants completed the baseline survey between 2014 and 2015, and were followed up until the end of 2020. We adopted single-component robust Poisson regression models for analyses, and estimated relative risks and 95% confidence intervals describing associations between the chemical constituents of PM2.5 exposure and incident cognitive impairment in those who were free from cognitive impairment at baseline. RESULTS: Significantly positive associations were observed between sulfate, nitrate, ammonium, and organic matter in PM2.5 and incident cognitive impairment across different exposure periods; the relative risks of 10-year exposure before enrollment ranged from 1.01 to 1.02. However, we did not find a significant association between black carbon and cognitive impairment. The point estimates of the relative risk values did not change substantially after performing the sensitivity analyses. CONCLUSIONS: Our findings strengthen the idea that long-term exposure to PM2.5 mass and its chemical components is associated with an elevated risk of incident cognitive impairment among older adults.


Subject(s)
Cognitive Dysfunction , Independent Living , Particulate Matter , Humans , Aged , Cognitive Dysfunction/epidemiology , Male , Particulate Matter/analysis , Particulate Matter/adverse effects , Female , China/epidemiology , Prospective Studies , Middle Aged , Environmental Exposure/adverse effects , Aged, 80 and over , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects
8.
Front Public Health ; 12: 1375106, 2024.
Article in English | MEDLINE | ID: mdl-38827624

ABSTRACT

Introduction: Depressive symptoms are often experienced by patients with arthritis and are correlated with poor health outcomes. However, the association between depressive symptoms and multidimensional factors (sociodemographic characteristics, health conditions, health behaviors, and social support) among older patients with arthritis in China remains poorly understood. This study aimed to explore the prevalence of depressive symptoms in older patients with arthritis in eastern China and identify the associated factors. Methods: We analyzed data of 1,081 older patients with arthritis using secondary data from 2014 to 2020 from a community-based ongoing study initiated in 2014 in eastern China. The prevalence of depressive symptoms was calculated, and univariate and multilevel logistic regression analyses were used to identify the associated factors. Results: The mean age of older patients with arthritis was 69.16 ± 7.13 years; 42.92% were men and 57.08% were women. The prevalence of depressive symptoms in older patients with arthritis was 14.99% (95% confidence interval: 12.91-17.26%), about 1.8 times higher than that in older adults without arthritis (8.49%, p < 0.001). Multilevel logistic regression identified perception of poor economic status (odds ratio [OR] = 5.52, p < 0.001), multimorbidity (OR = 1.96, p = 0.001), limitations in activities of daily living (OR = 2.36, p = 0.004), and living alone (OR = 3.13, p = 0.026) as factors positively associated with depressive symptoms. Patients diagnosed with arthritis at an older age had lower odds of experiencing depressive symptoms (OR = 0.67, p = 0.046). Conclusion: Screening for depressive symptoms is essential among older patients with arthritis, especially those who perceive themselves as having a poor economic status, are diagnosed at an earlier age, have multimorbidity, have limitations in activities of daily living, and live alone. The associations of age at arthritis diagnosis and dietary behaviors with depressive symptoms require further research.


Subject(s)
Arthritis , Depression , Humans , Male , Female , Aged , China/epidemiology , Arthritis/epidemiology , Depression/epidemiology , Prevalence , Middle Aged , Risk Factors , Cross-Sectional Studies , Social Support , Aged, 80 and over , Logistic Models , Activities of Daily Living , Socioeconomic Factors
9.
Chembiochem ; 25(15): e202400257, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847484

ABSTRACT

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.


Subject(s)
Fluorescent Dyes , Nitroreductases , Water , Nitroreductases/metabolism , Fluorescent Dyes/chemistry , Water/chemistry , Carbocyanines/chemistry , Solubility , Molecular Structure
10.
Biology (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927310

ABSTRACT

The erect leaf plays a crucial role in determining plant architecture, with its growth and development regulated by genetic factors. However, there has been a lack of comprehensive studies on the regulatory mechanisms governing wheat lamina joint development, thus failing to meet current breeding demands. In this study, a wheat erect leaf mutant, mths29, induced via fast neutron mutagenesis, was utilized for QTL fine mapping and investigation of lamina joint development. Genetic analysis of segregating populations derived from mths29 and Jimai22 revealed that the erect leaf trait was controlled by a dominant single gene. Using BSR sequencing and map-based cloning techniques, the QTL responsible for the erect leaf trait was mapped to a 1.03 Mb physical region on chromosome 5A. Transcriptome analysis highlighted differential expression of genes associated with cell division and proliferation, as well as several crucial transcription factors and kinases implicated in lamina joint development, particularly in the boundary cells of the preligule zone in mths29. These findings establish a solid foundation for understanding lamina joint development and hold promise for potential improvements in wheat plant architecture.

11.
Environ Sci Pollut Res Int ; 31(29): 42357-42371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872039

ABSTRACT

Identifying the key determinants of heavy metal(loid) accumulation in rice and quantifying their contributions are critical for precise prediction of heavy metal(loid) concentrations in rice and the formulation of effective pollution control strategies. The accumulation of heavy metal(loid)s in rice can be influenced by both natural and anthropogenic factors, which may interact with each other. However, distinguishing the independent roles (main effects) from interactive effects and quantifying their impacts separately pose challenges. To address this knowledge gap, we employed TreeExplainer-based SHAP and random forest algorithms in this study to quantitatively estimate the primary influencing factors and their main and interactive effects on heavy metal(loid)s in rice. Our findings reveal that soil cadmium (SCd) and rice cultivation time (C_TIME) were the primary contributors to rice cadmium (RCd) and rice arsenic (RAs), respectively. Soil lead (SPb) and sampling distances from roads significantly contributed to rice lead (RPb). Additionally, we identified significant interactive effects of SCd and C_TIME, C_TIME and RCd, and RCd and rice variety on RCd, RAs, and RPb, respectively, emphasizing their significance. These insights are pivotal in improving the accuracy of heavy metal(loid) concentration predictions in rice and offering theoretical guidance for the formulation of pollution control measures.


Subject(s)
Environmental Monitoring , Metals, Heavy , Oryza , Soil Pollutants , Oryza/metabolism , Soil/chemistry , Cadmium
12.
CNS Neurosci Ther ; 30(6): e14800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887162

ABSTRACT

BACKGROUND: Impaired mitochondrial dynamics have been identified as a significant contributing factor to reduced neurogenesis under pathological conditions. However, the relationship among mitochondrial dynamics, neurogenesis, and spatial memory during normal development remains unclear. This study aims to elucidate the role of mitophagy in spatial memory mediated by neurogenesis during development. METHODS: Adolescent and adult male mice were used to assess spatial memory performance. Immunofluorescence staining was employed to evaluate levels of neurogenesis, and mitochondrial dynamics were assessed through western blotting and transmission electron microscopy. Pharmacological interventions further validated the causal relationship among mitophagy, neurogenesis, and behavioral performance during development. RESULTS: The study revealed differences in spatial memory between adolescent and adult mice. Diminished neurogenesis, accompanied by reduced mitophagy, was observed in the hippocampus of adult mice compared to adolescent subjects. Pharmacological induction of mitophagy in adult mice with UMI-77 resulted in enhanced neurogenesis and prolonged spatial memory retention. Conversely, inhibition of mitophagy with Mdivi-1 in adolescent mice led to reduced hippocampal neurogenesis and impaired spatial memory. CONCLUSION: The observed decline in spatial memory in adult mice is associated with decreased mitophagy, which affects neurogenesis in the dentate gyrus. This underscores the therapeutic potential of enhancing mitophagy to counteract age- or disease-related cognitive decline.


Subject(s)
Hippocampus , Mitophagy , Neurogenesis , Spatial Memory , Animals , Neurogenesis/physiology , Neurogenesis/drug effects , Mitophagy/physiology , Mitophagy/drug effects , Spatial Memory/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Dynamics/physiology , Quinazolinones
13.
Plants (Basel) ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891304

ABSTRACT

Citrus Huanglongbing (HLB), caused by the phloem-inhibiting bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease, intimidating citrus production worldwide. Although commercially cultivated citrus cultivars are vulnerable to CLas infection, HLB-tolerant attributes have, however, been observed in certain citrus varieties, suggesting a possible pathway for identifying innate defense regulators that mitigate HLB. By adopting transcriptome and small RNAome analysis, the current study compares the responses of HLB-tolerant lemon (Citrus limon L.) with HLB-susceptible Shatangju mandarin (Citrus reticulata Blanco cv. Shatangju) against CLas infection. Transcriptome analysis revealed significant differences in gene expression between lemon and Shatangju. A total of 1751 and 3076 significantly differentially expressed genes were identified in Shatangju and lemon, respectively. Specifically, CLas infected lemon tissues demonstrated higher expressions of genes involved in antioxidant enzyme activity, protein phosphorylation, carbohydrate, cell wall, and lipid metabolism than Shatangju. Wet-lab experiments further validated these findings, demonstrating increased antioxidant enzyme activity in lemon: APX (35%), SOD (30%), and CAT (64%) than Shatangju. Conversely, Shatangju plants exhibited higher levels of oxidative stress markers like H2O2 (44.5%) and MDA content (65.2%), alongside pronounced ion leakage (11.85%), than lemon. Moreover, microscopic investigations revealed that CLas infected Shatangju phloem exhibits significantly more starch and callose accumulation than lemon. Furthermore, comparative sRNA profiles revealed the potential defensive regulators for HLB tolerance. In Shatangju, increased expression of csi-miR166 suppresses the expression of disease-resistant proteins, leading to inadequate defense against CLas. Conversely, reduced expression of csi-miR166 in lemon plants enables them to combat HLB by activating disease-resistance proteins. The above findings indicate that when infected with CLas, lemon exhibits stronger antioxidative activity and higher expression of disease-resistant genes, contributing to its enhanced tolerance to HLB. In contrast, Shatangju shows lower antioxidative activity, reduced expression of disease-resistant genes, significant ion leakage, and extensive callose deposition, possibly related to damage to plant cell structure and blockage of phloem sieve tubes, thereby promoting the development of HLB symptoms.

14.
J Virol ; 98(7): e0046724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38864621

ABSTRACT

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Carbapenems , Disease Models, Animal , Phage Therapy , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Animals , Acinetobacter Infections/therapy , Acinetobacter Infections/microbiology , Rats , Phage Therapy/methods , Carbapenems/pharmacology , Bacteriophages/physiology , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Male , Genome, Viral , Wastewater , Pneumonia/therapy , Pneumonia/microbiology , Pneumonia/virology
15.
Physiol Mol Biol Plants ; 30(5): 687-704, 2024 May.
Article in English | MEDLINE | ID: mdl-38846458

ABSTRACT

Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01455-4.

16.
Small ; : e2401059, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775621

ABSTRACT

Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger • O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.

17.
Trials ; 25(1): 316, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741220

ABSTRACT

BACKGROUND: Pudendal neuralgia is a chronic and debilitating condition. Its prevalence ranges from 5 to 26%. Currently, therapeutic approaches to treat pudendal neuralgia include patient education, medication management, psychological and physical therapy, and procedural interventions, such as nerve block, trigger point injections, and surgery. Drug therapy has a limited effect on pain relief. A pudendal nerve block may cause a significant decrease in pain scores for a short time; however, its efficacy significantly decreases over time. In contrast, pudendal nerve pulsed radiofrequency can provide pain relief for 3 months, and ganglion impar block has been widely used for treating chronic perineal pain and chronic coccygodynia. This study aimed to determine the efficacy and safety of monotherapy (pudendal nerve pulsed radiofrequency) and combination therapy (pudendal nerve pulsed radiofrequency plus ganglion impar block) in patients with pudendal neuralgia. METHODS: This randomized, controlled clinical trial will include 84 patients with pudendal neuralgia who failed to respond to drug or physical therapy. Patients will be randomly assigned into one of the two groups: mono or combined treatment groups. The primary outcome will be a change in pain intensity measured using the visual analog scale. The secondary outcomes will include a Self-Rating Anxiety Scale score, Self-Rating Depression Scale score, the use of oral analgesics, the Medical Outcomes Study Health Survey Short Form-36 Item score, and the occurrence of adverse effects. The study results will be analyzed using intention-to-treat and per-protocol analyses. Primary and secondary outcomes will be evaluated between the mono and combined treatment groups. Subgroup analyses will be conducted based on the initial ailment, age, and baseline pain intensity. The safety of the treatment will be assessed by monitoring adverse events, which will be compared between the two groups. DISCUSSION: This study protocol describes a randomized, controlled clinical trial to determine the efficacy and safety of mono and combination therapies in patients with pudendal neuralgia. The study results will provide valuable information on the potential benefits of this combination therapy and contribute to the development of more effective and safer treatments for patients with pudendal neuralgia. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2200061800).


Subject(s)
Pain Measurement , Pudendal Nerve , Pudendal Neuralgia , Pulsed Radiofrequency Treatment , Randomized Controlled Trials as Topic , Humans , Pudendal Neuralgia/therapy , Pulsed Radiofrequency Treatment/methods , Treatment Outcome , Middle Aged , Male , Female , Adult , Combined Modality Therapy , Aged , Autonomic Nerve Block/methods , Young Adult , Pain Management/methods
18.
J Immunother ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800996

ABSTRACT

RAD51, a key recombinase that catalyzes homologous recombination (HR), is commonly overexpressed in multiple cancers. It is curial for DNA damage repair (DDR) to maintain genomic integrity which could further determine the therapeutic response. Herein, we attempt to explore the clinical value of RAD51 in therapeutic guidance in muscle-invasive bladder cancer (MIBC). In this retrospective study, a total of 823 patients with MIBC were included. Zhongshan hospital (ZSHS) cohort (n=134) and The Cancer Genome Atlas-Bladder Cancer (TCGA-BLCA) cohort (n=391) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n=298) was utilized to interrogate the predictive efficacy of RAD51 status to programmed cell death ligand-1 (PD-L1) blockade. In addition, the association of RAD51 with genomic instability and tumor immune contexture was investigated. Patients with RAD51 overexpression were more likely to benefit from both platinum-based chemotherapy and immunotherapy rather than RAD51-low patients. The TMB high PD-L1 high RAD51 high subgroup possessed the best clinical benefits from PD-L1 blockade. RAD51-high tumors featured by genomic instability were correlated to highly inflamed and immunogenic contexture with activated immunotherapeutic pathway in MIBC. RAD51 could serve as a prognosticator for treatment response to platinum-based chemotherapy and PD-L1 inhibitor in MIBC patients. Besides, it could also improve the predictive efficacy of TMB and PD-L1.

19.
J Gastrointest Oncol ; 15(2): 597-611, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38756631

ABSTRACT

Background: As one of the most common diseases in terms of cancer-related mortality worldwide, gastric adenocarcinoma (GA) frequently develops peritoneal metastases (PMs) in advanced stages. Systemic therapy or optimal supportive care are recommended for advanced GA; however, patients frequently develop drug resistance. Surgical resection is not recommended for stage IV patients, and there have been some controversies regarding the role of it in GA patients with PMs. The aim of the study was to preliminarily evaluate the possible effect of surgical treatments on patients with only PMs from GA. Methods: Data were collected from the Surveillance, Epidemiology and End Results (SEER) database (year 2000-2022). A propensity score matching (PSM) was performed to reduce the influence of selection bias and confounding variables on comparisons. Then Cox proportional hazard regression, Kaplan-Meier analysis, and log-rank test were performed to assess the efficacy of surgical treatment in patients with PMs from GA. Results: A total of 399 patients diagnosed with PMs from GA were enrolled for our analysis, of which, 180 (45.1%) patients did not receive surgery and 219 (54.9%) patients received surgery. Multivariate Cox regression analysis before PSM indicated higher rates of overall survival (OS) outcome for patients who had received surgery [hazard ratio (HR) =0.4342, 95% confidence interval (CI): 0.3283-0.5742, P<0.001]. After PSM, a total of 172 patients were enrolled, with 86 in each group. Multivariate Cox analysis showed that surgery was the independent factor reflecting patients' survival (HR =0.4382, 95% CI: 0.3037-0.6324, P<0.001). Subgroup survival analysis revealed that surgery may bring advantages to patients with grades I-IV, stages T1-T4, stage N0, and tumor size less than 71 mm (P<0.05). We also found that the OS of chemotherapy patients who had undergone surgery was better than that of chemotherapy patients who had not undergone surgery (P<0.01). Conclusions: Based on the SEER database, surgery has better OS for patients only with PMs from GA. Patients without lymph node metastasis and those who received chemotherapy before may benefit from surgery. These specific groups of patients may have surgery as an option to improve the prognosis.

20.
Cancer Immunol Immunother ; 73(7): 121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714579

ABSTRACT

Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel MHCsig was developed and validated using large-scale pan-cancer data, including The Cancer Genome Atlas and immunotherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top-ranked genes, which were potential therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some potential therapeutic targets and regulatory networks.


Subject(s)
Immunotherapy , Machine Learning , Major Histocompatibility Complex , Neoplasms , Single-Cell Analysis , Humans , Immunotherapy/methods , Single-Cell Analysis/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/immunology , Major Histocompatibility Complex/genetics , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL