Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 657
Filter
1.
Exp Gerontol ; 194: 112514, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971132

ABSTRACT

Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). The transcriptional coactivator PPARγ coactivator 1 (PGC-1a) has been identified as a key regulator of mitochondrial biogenesis and function. However, the precise structure/function relationship between PGC-1a and mitochondrial quality control remains incompletely understood. In this study, we investigated the impact of PGC-1a on AD pathology and its underlying mechanisms with a specific focus on mitochondrial axonal transport. Additionally, we generated two PGC-1α mutants by substituting leucine residues at positions 148 and 149 within the LKKLL motif or at positions 209 and 210 within the LLKYL motif with alanine. Subsequently, we examined the effects of these mutants on mutAPP-induced abnormalities in anterograde and retrograde axonal transport, disrupted mitochondrial distribution, and impaired mitophagy. Mutagenesis studies revealed that the LLKYL motif at amino acid position 209-210 within PGC-1α plays an essential role in its interaction with estrogen-related receptors (ERRα), which is necessary for restoring normal mitochondrial anterograde axonal transport, maintaining proper mitochondrial distribution, and ultimately preventing neuronal apoptosis. Furthermore, it was found that the Leu-rich motif at amino acids 209-210 within PGC-1α is crucial for rescuing mutAPP-induced impairment in mitophagy and loss of membrane potential by restoring normal mitochondrial retrograde axonal transport. Conversely, mutation of residues 148 and 149 in the LKKLL motif does not compromise the effectiveness of PGC-1α. These findings provide valuable insights into the molecular determinants governing specificity of action for PGC-1α involved in regulating mutAPP-induced deficits in mitochondrial axonal trafficking. Moreover, they suggest a potential therapeutic target for addressing Alzheimer's disease.

2.
Clin Res Hepatol Gastroenterol ; 48(7): 102410, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950678

ABSTRACT

BACKGROUND: Slow-transmission constipation is a type of intractable constipation with unknown etiology and unclear pathogenesis. OBJECTIVE: The intention of this study was to evaluate the therapeutic effect and possible mechanism of Modified Zhizhu Pills on loperamide-induced slow transit constipation. METHODS: The effects of the Modified Zhizhu Pill were evaluated in a rat model of constipation induced by subcutaneous administration of loperamide. Fecal parameters (fecal count, fecal water content, and fecal hardness) were measured in constipated rats. The substance, target, and pathway basis of the Modified Zhizhu Pill on constipation was investigated using network pharmacology. The microflora in rats was determined. Serum neurotransmitters (acetylcholine and 5-hydroxytryptamine) were measured in rats and their relationship with the gut microbiota was assessed. RESULTS: Modified Zhizhu Pill increased the number of bowel movements and fecal water content, and decreased fecal hardness and transit time. Network pharmacological analysis showed that Modified Zhizhu Pill can target multiple constipation-related targets and pathways through multiple potential active ingredients. Modified Zhizhu Pill alleviated loperamide-induced microbiota dysbiosis. Modified Zhizhu Pill increased serum 5-hydroxytryptamine and acetylcholine. The increase in serum 5-hydroxytryptamine and acetylcholine was associated with rat gut microbiota. CONCLUSION: These results suggest that Modified Zhizhu Pill may increase intestinal motility and ultimately relieve constipation by improving microecological dysbiosis and neurotransmission.

3.
Int J Surg ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963751

ABSTRACT

BACKGROUND: Burn injuries with ≥70% total body surface area (TBSA) are especially acute and life-threatening, leading to severe complications and terrible prognosis, while a powerful model for prediction of overall survival (OS) is lacked. The objective of this study is to identify prognostic factors for the OS of patients with burn injury ≥70% TBSA, construct and validate a feasible predictive model. MATERIALS AND METHODS: Patients diagnosed with burns ≥70% TBSA admitted and treated between 2010 and 2020 in our hospital were included. A cohort of the patients from the Kunshan explosion were assigned as the validation set. The Chi-square test and K-M survival analysis were conducted to identify potential predictors for OS. Then, multi-variate Cox regression analysis was performed to identify the independent factors. Afterwards, we constructed a nomogram to predict OS probability. Finally, the Kunshan cohort was applied as an external validation set. RESULTS: Gender, the percentage of third- and fourth-degree burn as well as organ dysfunction were identified as significant independent factors. A nomogram only based on the factors of the individuals was built and evidenced to have promising predictive accuracy, accordance, and discrimination by both internal and external validation. CONCLUSIONS: This study recognized significant influencing factors for the OS of patients with burns ≥70% TBSA. Furthermore, our nomogram proved to be an effective tool for doctors to quickly evaluate patients' outcomes and make appropriate clinical decisions at an early stage of treatment.

4.
Cancer Immunol Immunother ; 73(9): 173, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953982

ABSTRACT

Recent studies have indicated that combining oncolytic viruses with CAR-T cells in therapy has shown superior anti-tumor effects, representing a promising approach. Nonetheless, the localized delivery method of intratumoral injection poses challenges for treating metastatic tumors or distal tumors that are difficult to reach. To address this obstacle, we employed HSV-1-infected CAR-T cells, which systemically delivery HSV into solid tumors. The biological function of CAR-T cells remained intact after loading them with HSV for a period of three days. In both immunocompromised and immunocompetent GBM orthotopic mouse models, B7-H3 CAR-T cells effectively delivered HSV to tumor lesions, resulting in enhanced T-cell infiltration and significantly prolonged survival in mice. We also employed a bilateral subcutaneous tumor model and observed that the group receiving intratumoral virus injection exhibited a significant reduction in tumor volume on the injected side, while the group receiving intravenous infusion of CAR-T cells carrying HSV displayed suppressed tumor growth on both sides. Hence, CAR-THSV cells offer notable advantages in the systemic delivery of HSV to distant tumors. In conclusion, our findings emphasize the potential of CAR-T cells as carriers for HSV, presenting significant advantages for oncolytic virotherapy targeting distant tumors.


Subject(s)
Immunotherapy, Adoptive , Oncolytic Virotherapy , Oncolytic Viruses , Receptors, Chimeric Antigen , Animals , Mice , Oncolytic Virotherapy/methods , Humans , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Herpesvirus 1, Human/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , T-Lymphocytes/immunology , Female , Glioblastoma/therapy , Glioblastoma/immunology
5.
Sci Rep ; 14(1): 15389, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965256

ABSTRACT

The objective was to explore the efficacy of single-port laparoscopic percutaneous extraperitoneal closure using double-modified hernia needles with hydrodissection (SLPEC group) and two-port laparoscopic percutaneous extraperitoneal closure (TLPEC group) for the treatment of giant indirect inguinal hernias in children. We performed a retrospective review of all children with giant indirect inguinal hernias (inner ring orifice diameter ≥ 1.5 cm) who underwent laparoscopic high ligation of the hernia sac at FuJian Children's Hospital from January 2019 to December 2021. We collected data from the medical records of all the children and analysed their clinical characteristics and operation-related and follow-up information. Overall, this study included a cohort of 219 patients with isolated giant inguinal hernias who had complete clinical data and who had undergone laparoscopic high ligation of the hernia sac at our centre. All procedures were successfully performed for the 106 patients who underwent SLPEC and for the 113 patients who underwent TLPEC at our centre. There were no statistically significant differences in patient age, sex, body weight, follow-up time or the side of inguinal hernia between the SLPEC group and the TLPEC group (P = 0.123, 0.613, 0.121, 0.076 and 0.081, respectively). However, there were significant differences in the bleeding volume, visual analogue scale (VAS) score, and postoperative activity time between the two groups (P ≤ 0.001). The operation times in the TLPEC group were significantly longer than those in the SLPEC group (P = 0.048), but there were no significant differences in hospital length of stay or hospitalization costs between the two groups (P = 0.244 and 0.073, respectively). Incision scars were found in 2 patients in the SLPEC group and 9 patients in the TLPEC group, and there was a significant difference between the two groups (P = 0.04). However, the incidence of ipsilateral hernia recurrence, surgical site infection, suture-knot reactions and chronic inguinodynia did not significantly differ between the two groups (P = 0.332, 0.301, 0.332 and 0.599, respectively). Postoperative hydrocele occurred in only 1 male child in the SLPEC group and in no male children in the TLPEC group, and there was no difference between the two groups (P = 0.310). In this study, there were no cases of testicular atrophy or iatrogenic ascent of the testis. Compared with the TLPEC group, the SLPEC group had the advantages of a concealed incision, light scarring, minimal invasiveness, a reduced operation time, minimal bleeding, mild pain and rapid recovery. In conclusion, SLPEC using double-modified hernia needles with hydrodissection and high ligation of the hernia sac is a safe, effective and minimally invasive surgery. The cosmetic results are impressive, and the follow-up results are promising.


Subject(s)
Hernia, Inguinal , Herniorrhaphy , Laparoscopy , Humans , Hernia, Inguinal/surgery , Male , Laparoscopy/methods , Female , Retrospective Studies , Child, Preschool , Child , Herniorrhaphy/methods , Herniorrhaphy/instrumentation , Needles , Infant , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/etiology
6.
J Cardiothorac Surg ; 19(1): 458, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026210

ABSTRACT

Mediastinal myelolipoma is a rare condition and has no obvious symptoms. In the past 20 years, some clinical cases have been documented. However, the literature has not systematically summarized its imaging features. The aim of this paper is to present a case of right posterior mediastinal myelolipoma and to review and summarize its imaging features. Twenty-six articles were included in our study, which included a total of 26 patients and 33 lesions; 90.9% of the lesions were located in the mediastinum at the level from the 8th thoracic vertebral body to the thoracic 12th vertebral body. Among the cases with unilateral mediastinum, 68.4% of the cases were located in the right posterior mediastinum. Bilateral lesions accounted for almost one-fourth of all lesions. After contrast medium was injected, 93.9% of the lesions had mild to moderate enhancement; 84.8% of the lesions contained fat density; and 75.8%, 69.7%, 87.9%, and 75.8% of the lesions showed clear boundary, regular shape, heterogeneity and were encapsulated, respectively. Only 12.1% of the lesions contained calcification. An inhomogeneous mass in the right posterior mediastinum near the spine, including fat density, is the predominant imaging marker of most mediastinal myelolipomas.


Subject(s)
Mediastinal Neoplasms , Myelolipoma , Humans , Magnetic Resonance Imaging/methods , Mediastinal Neoplasms/diagnostic imaging , Myelolipoma/diagnostic imaging , Myelolipoma/surgery , Myelolipoma/pathology , Tomography, X-Ray Computed
7.
Cell Host Microbe ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959900

ABSTRACT

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.

8.
Article in English | MEDLINE | ID: mdl-38836725

ABSTRACT

Background: Peritoneal lesions present diagnostic challenges, necessitating precise imaging techniques. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) offers a promising approach for accurate diagnosis, aiding in optimal patient management and treatment planning. Objective: This study aims to assess the diagnostic efficacy of EUS-FNA in peritoneal lesions to offer insight in guiding optimal patient management. Methods: A prospective observational study was conducted, and a total of 58 patients who underwent EUS-FNA of the peritoneum at our hospital between October 2021 and November 2021 were included. The ultrasound diagnostic instrument facilitated puncture guidance, with 2-5 punctures performed in various parts of the selected peritoneal lesion areas. The analysis encompassed evaluating the sensitivity, specificity, positive predictive value, and negative predictive value of biopsy for diagnosing peritoneal-associated lesions, alongside assessing the number of punctures, puncture satisfaction, and incidence of postoperative complications. Results: The included patients undergoing EUS-FNA revealed that 41 (70.69%) had malignant lesions, while 17 (29.31%) presented with benign lesions. The diagnostic accuracy of EUS-FNA for peritoneal lesions was determined to be 94.83%, with a diagnostic sensitivity of 97.30% for malignant tumors, specificity of 90.48%, positive predictive value of 94.74%, and negative predictive value of 95%. Lesions exhibited a size range of 2.5cm × 2.9cm to 15.2cm × 9.8cm. Each patient underwent 2-5 punctures (3.3 ± 1.4), with a puncture satisfaction rate of 96.55%. The incidence of postoperative complications following EUS-FNA was found to be 3.45%. Conclusion: EUS-FNA exhibits substantial diagnostic utility for peritoneal-related lesions, marked by exceptional accuracy, sensitivity, specificity, and favorable safety. Its clinical adoption is warranted, promising improved patient care and management.

9.
Anticancer Drugs ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38848248

ABSTRACT

Based on the FLAURA and AURA III trials, compared to first- and second-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), osimertinib provides a longer overall survival benefit for patients with untreated EGFR mutated non-small cell lung cancer. Similar to other EGFR-TKIs, drug resistance is, however, inevitable. The most common mechanism of acquired resistance to first-line osimertinib therapy is the C797S mutation, which accounts for 6% of cases. In view of the current challenges of the development of the next generation of EGFR inhibitors, the mechanism of third-generation targeted drug resistances and targeted strategies are key for further exploration. Our case report discusses a female patient with advanced lung adenocarcinoma carrying the EGFR exon19 E746_A750delinsIP mutation who received osimertinib as first-line therapy and acquired C797S resistance during treatment. The patient was then treated with icotinib for 8 months until the disease progressed. Icotinib may be effective in patients with the EGFR 19del-C797S resistant mutation acquired after osimertinib treatment.

10.
Front Microbiol ; 15: 1403478, 2024.
Article in English | MEDLINE | ID: mdl-38939192

ABSTRACT

Introduction: Sodium pheophorbide a (SPA) is a natural plant-derived photosensitizer, with high photoactivated antifungal activity against some phytopathogenic fungi. However, its fungicidal effect on Diaporthe mahothocarpus, a novel pathogen that causes Camellia oleifera leaf spot blight, is unclear. Methods: In the present study, we explored its inhibitory effects on spore germination and mycelial growth of D. mahothocarpus. Then we determined its effects on the cell membrane, mycelial morphology, redox homeostasis, and cell death through bioassay. Finally, RNA-seq was used further to elucidate its mode of action at the transcriptional level. Results: We found that SPA effectively inhibited the growth of D. mahothocarpus, with half-maximal effective concentrations to inhibit mycelial growth and spore germination of 1.059 and 2.287 mg/mL, respectively. After 1.0 mg/mL SPA treatment, the conductivity and malondialdehyde content of D. mahothocarpus were significantly increased. Scanning electron microscopy and transmission electron microscopy indicated that SPA significantly affected the morphology and ultrastructure of D. mahothocarpus hyphae, revealing that SPA can destroy the mycelial morphology and cell structure, especially the cell membrane of D. mahothocarpus. Furthermore, transcriptome analysis revealed that SPA significantly suppressed the expression of genes involved in morphology, cell membrane permeability, and oxidative stress. Then, we also found that SPA significantly promoted the accumulation of reactive oxygen species (ROS) in of D. mahothocarpus, while it decreased the content of reduced glutathione, inhibited the enzyme activities of superoxide dismutase and catalase, and exacerbated DNA damage. Annexin V-FITC/PI staining also confirmed that 1.0 mg/mL SPA could significantly induce apoptosis and necrosis. Discussion: Generally, SPA can induce ROS-mediated oxidative stress and cell death, thus destroying the cell membrane and hyphal morphology, and ultimately inhibiting mycelial growth, which indicates that SPA has multiple modes of action, providing a scientific basis for the use of SPA as an alternative plant-derived photoactivated fungicide against C. oleifera leaf spot blight.

11.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920343

ABSTRACT

While significant strides have been made in predicting neoepitopes that trigger autologous CD4+ T cell responses, accurately identifying the antigen presentation by human leukocyte antigen (HLA) class II molecules remains a challenge. This identification is critical for developing vaccines and cancer immunotherapies. Current prediction methods are limited, primarily due to a lack of high-quality training epitope datasets and algorithmic constraints. To predict the exogenous HLA class II-restricted peptides across most of the human population, we utilized the mass spectrometry data to profile >223 000 eluted ligands over HLA-DR, -DQ, and -DP alleles. Here, by integrating these data with peptide processing and gene expression, we introduce HLAIImaster, an attention-based deep learning framework with adaptive domain knowledge for predicting neoepitope immunogenicity. Leveraging diverse biological characteristics and our enhanced deep learning framework, HLAIImaster is significantly improved against existing tools in terms of positive predictive value across various neoantigen studies. Robust domain knowledge learning accurately identifies neoepitope immunogenicity, bridging the gap between neoantigen biology and the clinical setting and paving the way for future neoantigen-based therapies to provide greater clinical benefit. In summary, we present a comprehensive exploitation of the immunogenic neoepitope repertoire of cancers, facilitating the effective development of "just-in-time" personalized vaccines.


Subject(s)
Deep Learning , Histocompatibility Antigens Class II , Humans , Histocompatibility Antigens Class II/immunology , Epitopes/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology
12.
Anim Biosci ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38938024

ABSTRACT

Objective: The objective of this study was to unravel the genetic traits of Guanling cattle, pinpoint genes advantageous for muscle growth, and lay a foundation for the preservation of genetic diversity and further analysis of regulation mechanism of important economic traits in local cattle breed. Methods: In this study, we sequenced the whole genome of 3 Guanling cattle in Guizhou province using the Illumina HiSeq cBo sequencing platform. And, high- multiplex PCR technology was employed to detect high-quality SNP sites of other 55 Guanling cattle. Results: Our study identified 166,411 non-synonymous SNPs (nsSNPs) and 42,423 insertions and deletions (indels). Through SNP annotation, gene function enrichment analysis, and comparing with Simmental, Angus, and Limousin cattle, we identified six genes (LEPR, AKAP9, SIX4, SPIDR, PRG4, FASN) which are potentially influential on meat quality traits, playing crucial roles in muscle growth, fat metabolism, and bodily support. We also examined polymorphisms at seven SNP sites in Guanling cattle and found that all seven were in Hardy-Weinberg equilibrium. Conclusion: These findings suggested that these gene sites are stable and widespread in the Guanling cattle population. Our research lays the groundwork for future genetic enhancement and variety identification of Guanling cattle.

13.
Nat Commun ; 15(1): 4360, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777851

ABSTRACT

The rotational dynamics of a molecule is sensitive to neighboring atoms or molecules, which can be used to probe the intermolecular interactions in the gas phase. Here, we real-time track the laser-driven rotational dynamics of a single N2 molecule affected by neighboring Ar atoms using coincident Coulomb explosion imaging. We find that the alignment trace of N-N axis decays fast and only persists for a few picoseconds when an Ar atom is nearby. We show that the decay rate depends on the rotational geometry of whether the Ar atom stays in or out of the rotational plane of the N2 molecule. Additionally, the vibration of the van der Waals bond is found to be excited through coupling with the rotational N-N axis. The observations are well reproduced by solving the time-dependent Schrödinger equation after taking the interaction potential between the N2 and Ar into consideration. Our results demonstrate that environmental effects on a molecular level can be probed by directly visualizing the rotational dynamics.

14.
Gut ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724220

ABSTRACT

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.

15.
Article in English | MEDLINE | ID: mdl-38763304

ABSTRACT

OBJECTIVE: Accurately predicting response during neoadjuvant chemoimmunotherapy for resectable non-small cell lung cancer remains clinically challenging. In this study, we investigated the effectiveness of blood-based tumor mutational burden (bTMB) and a deep learning (DL) model in predicting major pathologic response (MPR) and survival from a phase 2 trial. METHODS: Blood samples were prospectively collected from 45 patients with stage IIIA (N2) non-small cell lung cancer undergoing neoadjuvant chemoimmunotherapy. An integrated model, combining the computed tomography-based DL score, bTMB, and clinical factors, was developed to predict tumor response to neoadjuvant chemoimmunotherapy. RESULTS: At baseline, bTMB were detected in 77.8% (35 of 45) of patients. Baseline bTMB ≥11 mutations/megabase was associated with significantly greater MPR rates (77.8% vs 38.5%, P = .042), and longer disease-free survival (P = .043), but not overall survival (P = .131), compared with bTMB <11 mutations/megabase in 35 patients with bTMB available. The developed DL model achieved an area under the curve of 0.703 in all patients. Importantly, the predictive performance of the integrated model improved to an area under the curve of 0.820 when combining the DL score with bTMB and clinical factors. Baseline circulating tumor DNA (ctDNA) status was not associated with pathologic response and survival. Compared with ctDNA residual, ctDNA clearance before surgery was associated with significantly greater MPR rates (88.2% vs 11.1%, P < .001) and improved disease-free survival (P = .010). CONCLUSIONS: The integrated model shows promise as a predictor of tumor response to neoadjuvant chemoimmunotherapy. Serial ctDNA dynamics provide a reliable tool for monitoring tumor response.

16.
Anal Bioanal Chem ; 416(17): 3923-3944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705905

ABSTRACT

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Biosensing Techniques/methods , Luminescence , Animals , Peptides/chemistry , DNA/chemistry , Proteins/chemistry , Luminescent Agents/chemistry , Amino Acids/chemistry
17.
Indian J Orthop ; 58(5): 587-597, 2024 May.
Article in English | MEDLINE | ID: mdl-38694692

ABSTRACT

Background: Lumbar disc herniation is a common degenerative lumbar disease with an increasing incidence. Percutaneous endoscopic lumbar discectomy can treat lumbar disc herniation safely and effectively with a minimally invasive procedure. However, the learning curve of this technology is steep, which means that initial learners are often not sufficiently proficient in endoscopic operations, which can easily lead to iatrogenic damage. At present, the application of computer deep learning technology to clinical diagnosis, treatment, and surgical navigation has achieved satisfactory results. Purpose: The objective of our team is to develop a multi-element identification system for the visual field of endoscopic spine surgery using deep learning algorithms and to evaluate the feasibility of this system. Method: We established an image database by collecting surgical videos of 48 patients diagnosed with lumbar disc herniation, which was labeled by two spinal surgeons. We selected 6000 images of the visual field of percutaneous endoscopic spine surgery (including various tissue structures and surgical instruments), divided into the training data, validation data, and test data according to 2:1:2. We developed convolutional neural network models based on instance segmentation-Solov2, CondInst, Mask R-CNN and Yolact, and set the four network model backbone as ResNet101 and ResNet50 respectively. Mean average precision (mAP) and frames per second (FPS) were used to measure the performance of each model for classification, localization and recognition in real time, and AP (average) is used to evaluate how easily an element is detected by neural networks based on computer deep learning. Result: Comprehensively comparing mAP and FSP of each model for bounding box test and segmentation task for the test set of images, we found that Solov2 (ResNet101) (mAP = 73.5%, FPS = 28.9), Mask R-CNN (ResNet101) (mAP = 72.8%, FPS = 28.5) models are the most stable, with higher precision and faster image processing speed. Combining the average precision of the elements in the bounding box test and segmentation tasks in each network, the AP(average) was highest for tool 3 (bbox-0.85, segm-0.89) and lowest for tool 5 (bbox-0.63, segm-0.72) in the instrumentation, whereas in the anatomical tissue elements, the fibrosus annulus (bbox-0.68, segm-0.69) and ligamentum flavum (bbox-0.65, segm-0.62) had higher AP(average),while extra-dural fat (bbox-0.42, segm-0.44) was lowest. Conclusion: Our team has developed a multi-element identification system for the visual field of percutaneous endoscopic spine surgery adapted to the interlaminar and foraminal approaches, which can identify and track anatomical tissue (nerve, ligamentum flavum, nucleus pulposus, etc.) and surgical instruments (endoscopic forceps, an high-speed diamond burr, etc.), which can be used in the future as a virtual educational tool or applied to the intraoperative real-time assistance system for spinal endoscopic operation.

18.
Adv Sci (Weinh) ; 11(25): e2401214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38647420

ABSTRACT

Deep penetration and downregulation of heat shock protein (HSP) expression in multimodal synergistic therapy are promising approaches for curing cancer in clinical trials. However, free small-molecule drugs and most drug vehicles have a low delivery efficiency deep into the tumor owing to poor drug penetration and hypoxic conditions at the tumor site. In this study, the objective is to use reactive oxygen species (ROS)-responsive supramolecular gels co-loaded with the photosensitizer Zn(II) phthalocyanine tetrasulfonic acid (ZnPCS4) and functionalized tetrahedral DNA (TGSAs) (G@P/TGSAs) to enhance deep tissue and cell penetration and block the HSP90 pathway for chemo- photodynamic therapy (PDT) - photothermal therapy (PTT) trimodal synergistic therapy. The (G@P/TGSAs) are injected in situ into the tumor to release ZnPCS4 and TGSAs under high ROS concentrations originating from both the tumor and PDT. TGSAs penetrate deeply into tumor tissues and augment photothermal therapy by inhibiting the HSP90 pathway. Proteomics show that HSP-related proteins and molecular chaperones are inhibited/activated, inhibiting the HSP90 pathway. Simultaneously, the TGSA-regulated apoptotic pathway is activated. In vivo study demonstrates efficient tumor penetration and excellent trimodal synergistic therapy (45% tumor growth inhibition).


Subject(s)
HSP90 Heat-Shock Proteins , Photochemotherapy , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Animals , Mice , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Photochemotherapy/methods , Gels , Photosensitizing Agents/pharmacology , Photothermal Therapy/methods , Disease Models, Animal , Indoles/pharmacology , Humans , Combined Modality Therapy/methods , Cell Line, Tumor , Isoindoles
19.
Chin Neurosurg J ; 10(1): 12, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594757

ABSTRACT

BACKGROUND: Patients with disorders of consciousness (DoC) exhibit varied revival outcomes based on different etiologies and diagnoses, the mechanisms of which remain largely unknown. The fluctuating clinical presentations in DoC pose challenges in accurately assessing consciousness levels and prognoses, often leading to misdiagnoses. There is an urgent need for a deeper understanding of the physiological changes in DoC and the development of objective diagnostic and prognostic biomarkers to improve treatment guidance. METHODS: To explore biomarkers and understand the biological processes, we conducted a comprehensive untargeted metabolomic analysis on serum samples from 48 patients with DoC. Patients were categorized based on etiology (TBI vs. non-TBI), CRS-R scores, and prognosis. Advanced analytical techniques, including PCA and OPLS-DA models, were employed to identify differential metabolites. RESULTS: Our analysis revealed a distinct separation in metabolomic profiles among the different groups. The primary differential metabolites distinguishing patients with varying etiologies were predominantly phospholipids, with a notable decrease in glycerophospholipids observed in the TBI group. Patients with higher CRS-R scores exhibited a pattern of impaired carbohydrate metabolism coupled with enhanced lipid metabolism. Notably, serum concentrations of both LysoPE and PE were reduced in patients with improved outcomes, suggesting their potential as prognostic biomarkers. CONCLUSIONS: Our study underscores the critical role of phospholipid metabolism in the brain's metabolic alterations in patients with DoC. It identifies key biomarkers for diagnosis and prognosis, offering insights that could lead to novel therapeutic targets. These findings highlight the value of metabolomic profiling in understanding and potentially treating DoC.

20.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38561176

ABSTRACT

MOTIVATION: Understanding the intermolecular interactions of ligand-target pairs is key to guiding the optimization of drug research on cancers, which can greatly mitigate overburden workloads for wet labs. Several improved computational methods have been introduced and exhibit promising performance for these identification tasks, but some pitfalls restrict their practical applications: (i) first, existing methods do not sufficiently consider how multigranular molecule representations influence interaction patterns between proteins and compounds; and (ii) second, existing methods seldom explicitly model the binding sites when an interaction occurs to enable better prediction and interpretation, which may lead to unexpected obstacles to biological researchers. RESULTS: To address these issues, we here present DrugMGR, a deep multigranular drug representation model capable of predicting binding affinities and regions for each ligand-target pair. We conduct consistent experiments on three benchmark datasets using existing methods and introduce a new specific dataset to better validate the prediction of binding sites. For practical application, target-specific compound identification tasks are also carried out to validate the capability of real-world compound screen. Moreover, the visualization of some practical interaction scenarios provides interpretable insights from the results of the predictions. The proposed DrugMGR achieves excellent overall performance in these datasets, exhibiting its advantages and merits against state-of-the-art methods. Thus, the downstream task of DrugMGR can be fine-tuned for identifying the potential compounds that target proteins for clinical treatment. AVAILABILITY AND IMPLEMENTATION: https://github.com/lixiaokun2020/DrugMGR.


Subject(s)
Proteins , Ligands , Proteins/chemistry , Binding Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...