Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38666497

ABSTRACT

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Male , Rats , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
2.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Article in English | MEDLINE | ID: mdl-38679241

ABSTRACT

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Subject(s)
Antihypertensive Agents , Attention Deficit Disorder with Hyperactivity , Behavior, Animal , Captopril , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Rats, Inbred SHR , Animals , Gastrointestinal Microbiome/drug effects , Pregnancy , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/chemically induced , Female , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Male , Rats , Behavior, Animal/drug effects , Labetalol/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Hypertension, Pregnancy-Induced/chemically induced , Dopamine/metabolism
3.
Circ Res ; 131(9): e120-e134, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36164984

ABSTRACT

BACKGROUND: Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS: We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS: We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS: Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.


Subject(s)
Faecalibacterium prausnitzii , Renal Insufficiency, Chronic , Animals , Butyrates/pharmacology , Butyrates/therapeutic use , Disease Models, Animal , Inflammation , Kidney/physiology , Receptors, G-Protein-Coupled/genetics
4.
Food Funct ; 13(18): 9532-9543, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35997017

ABSTRACT

Gut microbiota is well-established to regulate host blood pressure. Diosgenin is a natural steroid sapogenin with documented anti-inflammatory, antioxidant and antihypertensive properties. We aimed to investigate whether the antihypertensive effects of diosgenin are mediated by the microbiota-gut-brain axis in spontaneously hypertensive rats (SHR). 15-Week-old male Wistar Kyoto rats (WKY) and age-matched SHR were randomly distributed into three groups: WKY, SHR treated with a vehicle, and SHR treated with diosgenin (100 mg kg-1). Our results showed that diosgenin prevented elevated systolic blood pressure (SBP) and ameliorated cardiac hypertrophy in SHR. Moreover, the gut microbiota composition and intestinal integrity were improved. Furthermore, increased butyrate-producing bacteria and plasma butyrate and decreased plasma lipopolysaccharides were observed in SHR treated with diosgenin. These findings were associated with reduced microglial activation and neuroinflammation in the paraventricular nucleus. Our findings suggest that diosgenin attenuates hypertension by reshaping the gut microbiota and improving the gut-brain axis.


Subject(s)
Diosgenin , Hypertension , Sapogenins , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antioxidants/pharmacology , Blood Pressure , Brain , Butyrates , Diosgenin/pharmacology , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sapogenins/pharmacology
5.
Toxicol Appl Pharmacol ; 429: 115701, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34453990

ABSTRACT

Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.


Subject(s)
Antihypertensive Agents/pharmacology , Bacteria/drug effects , Blood Pressure/drug effects , Brain-Gut Axis/drug effects , Curcumin/pharmacology , Gastrointestinal Microbiome/drug effects , Hypertension/drug therapy , Paraventricular Hypothalamic Nucleus/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Bacteria/growth & development , Bacteria/metabolism , Butyrates/blood , Cardiomegaly/metabolism , Cardiomegaly/microbiology , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Disease Models, Animal , Dysbiosis , Hypertension/metabolism , Hypertension/microbiology , Hypertension/physiopathology , Inflammation Mediators/metabolism , Male , Oxidative Stress/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/physiopathology , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/metabolism
6.
Sci Rep ; 11(1): 14934, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294773

ABSTRACT

Kidney cancer is the third most common malignancy of the urinary system, of which, kidney renal clear cell carcinoma (KIRC) accounts for the vast majority. Runt-related transcription factors (RUNX) are involved in multiple cellular functions. However, the diverse expression patterns and prognostic values of RUNX genes in kidney cancer remained to be elucidated. In our study, we mined the DNA methylation, transcriptional and survival data of RUNX genes in patients with different kinds of kidney cancer through Oncomine, Gene Expression Profiling Interactive Analysis, UALCAN, Kaplan-Meier Plotter, cBioPortal and LinkedOmics. We found that RUNX1 and RUNX3 were upregulated in KIRC tissues compared with those in normal tissues. The survival analysis results indicated a high transcription level of RUNX1 was associated with poor overall survival (OS) in KIRC patients. Furthermore, KIRC tumor tissues had significantly lower levels of RUNX1 promoter methylation than that in paracancerous tissues, with decreased DNA methylation of RUNX1 notably associated with poor OS in KIRC. In conclusion, our results revealed that RUNX1 may be a potential therapeutic target for treating KIRC, and RUNX1 promoter methylation level shows promise as a novel diagnostic and prognostic biomarker, which laid a foundation for further study.


Subject(s)
Carcinoma, Renal Cell/mortality , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Kidney Neoplasms/mortality , Up-Regulation , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , DNA Methylation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Male , Middle Aged , Prognosis , Promoter Regions, Genetic , Survival Analysis
7.
Gut Microbes ; 13(1): 1-24, 2021.
Article in English | MEDLINE | ID: mdl-33382364

ABSTRACT

Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered ß diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.


Subject(s)
Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Hypertension/therapy , Physical Conditioning, Animal/physiology , Animals , Blood Pressure , Cardiomegaly/prevention & control , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Hypertension/pathology , Inflammation/prevention & control , Male , Microglia/metabolism , Paraventricular Hypothalamic Nucleus/pathology , Permeability , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sympathetic Nervous System/pathology
8.
Toxicol Appl Pharmacol ; 394: 114950, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32147540

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) plays crucial roles in central cardiovascular regulation. Increasing evidence in humans and rodents shows that vitamin D intake is important for achieving optimal cardiovascular function. The purpose of this study was to investigate whether calcitriol, an active form of vitamin D, improves autonomic and cardiovascular function in hypertensive rats and whether PVN oxidative stress and inflammation are involved in these beneficial effects. Male spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were treated with either calcitriol (40 ng/day) or vehicle (0.11 µL/h) through chronic PVN infusion for 4 weeks. Blood pressure and heart rate were recorded continuously by radiotelemetry. PVN tissue, heart and plasma were collected for molecular and histological analysis. Compared to WKY rats, SHR exhibited increased systolic blood pressure, sympathetic drive, and cardiac hypertrophy and remodeling. These were associated with higher mRNA and protein expression levels of high mobility box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), proinflammatory cytokines, NADPH oxidase subunit in the PVN. In addition, increased norepinephrine in plasma, elevated reactive oxygen species levels and activation of microglia in the PVN were also observed in SHR. Chronic calcitriol treatment ameliorated these changes but not in WKY rats. Our results demonstrate that chronic infusion of calcitriol in the PVN ameliorates hypertensive responses, sympathoexcitation and retains cardiovascular function in SHR. Reduced inflammation and oxidative stress within the PVN are involved in these calcitriol-induced effects.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Autonomic Nervous System Diseases/drug therapy , Calcitriol/therapeutic use , Calcium Channel Agonists/therapeutic use , Hypertension/drug therapy , Paraventricular Hypothalamic Nucleus/drug effects , Animals , Autonomic Nervous System Diseases/genetics , Blood Pressure/drug effects , Cardiomegaly/prevention & control , Gene Expression Regulation/drug effects , Heart Rate/drug effects , Hypertension/genetics , Male , Oxidative Stress/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL
...