Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134825

ABSTRACT

Recent insights into Parkinson's disease (PD), a progressive neurodegenerative disorder, suggest a significant influence of the gut microbiome on its pathogenesis and progression through the gut-brain axis. This study integrates 16S rRNA sequencing, high-throughput transcriptomic sequencing, and animal model experiments to explore the molecular mechanisms underpinning the role of gut-brain axis in PD, with a focus on short-chain fatty acids (SCFAs) mediated by the SCFA receptors FFAR2 and FFAR3. Our findings highlighted prominent differences in the gut microbiota composition between PD patients and healthy individuals, particularly in taxa such as Escherichia_Shigella and Bacteroidetes, which potentially impact SCFA levels through secondary metabolite biosynthesis. Notably, fecal microbiota transplantation (FMT) from healthy to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models significantly improved motor function, enhanced dopamine and serotonin levels in the striatum, and increased the number of dopaminergic neurons in the substantia nigra while reducing glial cell activation. This therapeutic effect was associated with increased levels of SCFAs such as acetate, propionate, and butyrate in the gut of MPTP-lesioned mice. Moreover, transcriptomic analyses revealed upregulated expression of FFAR2 and FFAR3 in MPTP-lesioned mice, indicating their crucial role in mediating the benefits of FMT on the central nervous system. These results provide compelling evidence that gut microbiota and SCFAs play a critical role in modulating the gut-brain axis, offering new insights into PD's etiology and potential targets for therapeutic intervention.

2.
Cell Mol Neurobiol ; 44(1): 57, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060759

ABSTRACT

Optogenetics, a revolutionary technique integrating optical and genetic methodologies, offers unparalleled precision in spatial targeting and temporal resolution for cellular control. This approach enables the selective manipulation of specific neuronal populations, inducing subtle electrical changes that significantly impact complex neural circuitry. As optogenetics precisely targets and modulates neuronal activity, it holds the potential for significant breakthroughs in understanding and potentially altering the course of neurodegenerative diseases, characterized by selective neuronal loss leading to functional deficits within the nervous system. The integration of optogenetics into neurodegenerative disease research has significantly advanced in the field, offering new insights and paving the way for innovative treatment strategies. Its application in clinical settings, although still in the nascent stages, suggests a promising future for addressing some of the most challenging aspects of neurodegenerative disorders. In this review, we provide a comprehensive overview of these research undertakings.


Subject(s)
Neurodegenerative Diseases , Optogenetics , Optogenetics/methods , Humans , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/genetics , Animals , Neurons/metabolism
3.
Int Immunopharmacol ; 138: 112645, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38972208

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS: CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS: Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION: CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein C , Animals , Humans , Male , Mice , Bleomycin , Disease Models, Animal , Lentivirus/genetics , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/therapy , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
4.
Int Immunopharmacol ; 139: 112745, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39059099

ABSTRACT

Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.


Subject(s)
Acute Kidney Injury , Mice, Inbred C57BL , Mice, Knockout , Necroptosis , Receptors, Bombesin , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Humans , Necroptosis/drug effects , Mice , Male , Cell Line , Receptors, Bombesin/metabolism , Receptors, Bombesin/antagonists & inhibitors , Inflammation/drug therapy , Disease Models, Animal , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Heliyon ; 10(13): e33745, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071711

ABSTRACT

Aim and objectives: This study aimed to identify symptom cluster (SC) patterns and change trajectories in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD), the correlation of the SCs with laboratory and imaging indicators, and the intrinsic association of the SCs with prognostic outcomes and disease burden. Method: Symptom information was collected using a digital evaluation scoring system at the time of admission, on the third day after admission, and upon discharge. Laboratory and imaging examination data were compiled simultaneously. Exploratory factor analysis was used to identify the AECOPD SCs. The number of factors (clusters) was determined by examining factors with eigenvalues ≥1.0, using 0.50 for factor loadings as the minimum cut-off value. Spearman's correlation analysis was used to explore the link between the SCs and laboratory and imaging indicators, as well as the relationship between the severity of the symptoms in different clusters, prognostic outcomes, and disease burden. Results: This study included 148 patients. Three SCs were identified: activity-nutrition SC, breath-sleep SC and respiratory SC. Correlation analysis indicated a connection between the activity-nutrition SC and the white blood cell count, and serum sodium and potassium levels, whereas the breath-sleep SC was correlated with white blood cells and eosinophil counts, serum potassium level, and pleural effusion. Additionally, the respiratory SC was associated with serum calcium and magnesium levels, the partial pressure of carbon dioxide, and C-reactive protein (CRP) level. There was a positive correlation between the activity-nutrition SC and hospitalization cost, as well as between the breath-sleep SC and both the hospitalization length and cost. Conclusion: Patients with AECOPD presented three SCs that affected the length and cost of hospitalization. Concurrently, the severity of the symptoms in the clusters was related to white blood cell and eosinophil counts; serum sodium, potassium, calcium, and magnesium levels; CRP level; the partial pressure of carbon dioxide; and pleural effusion, indicating that the symptoms in each clusters may share related physiological mechanisms. An in-depth exploration of the pathogenesis and intervention paths of health problems is of great significance for promoting precision nursing.

6.
J Transl Med ; 22(1): 698, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075394

ABSTRACT

BACKGROUND: Severe COVID-19 infection has been associated with the development of pulmonary fibrosis, a condition that significantly affects patient prognosis. Understanding the underlying cellular communication mechanisms contributing to this fibrotic process is crucial. OBJECTIVE: In this study, we aimed to investigate the role of the TNFSF12-TNFRSF12A pathway in mediating communication between alveolar macrophages and fibroblasts, and its implications for the development of pulmonary fibrosis in severe COVID-19 patients. METHODS: We conducted single-cell RNA sequencing (scRNA-seq) analysis using lung tissue samples from severe COVID-19 patients and healthy controls. The data was processed, analyzed, and cell types were annotated. We focused on the communication between alveolar macrophages and fibroblasts and identified key signaling pathways. In vitro experiments were performed to validate our findings, including the impact of TNFRSF12A silencing on fibrosis reversal. RESULTS: Our analysis revealed that in severe COVID-19 patients, alveolar macrophages communicate with fibroblasts primarily through the TNFSF12-TNFRSF12A pathway. This communication pathway promotes fibroblast proliferation and expression of fibrotic factors. Importantly, silencing TNFRSF12A effectively reversed the pro-proliferative and pro-fibrotic effects of alveolar macrophages. CONCLUSION: The TNFSF12-TNFRSF12A pathway plays a central role in alveolar macrophage-fibroblast communication and contributes to pulmonary fibrosis in severe COVID-19 patients. Silencing TNFRSF12A represents a potential therapeutic strategy for mitigating fibrosis in severe COVID-19 lung disease.


Subject(s)
COVID-19 , Fibroblasts , Macrophages, Alveolar , Pulmonary Fibrosis , Signal Transduction , TWEAK Receptor , Humans , COVID-19/complications , COVID-19/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/complications , TWEAK Receptor/metabolism , TWEAK Receptor/genetics , Cytokine TWEAK/metabolism , Cell Communication , Male , SARS-CoV-2 , Female , Middle Aged , Cell Proliferation , Lung/pathology , Severity of Illness Index
7.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786808

ABSTRACT

In this paper, we designed and investigated a reduction-based method to synthesize controllably monodisperse superparamagnetic nano Fe3O4 colloidal clusters for magnetically responsive photonic crystals. It was shown that the addition of ascorbic acid (VC) to the system could synthesize monodisperse superparamagnetic nano Fe3O4 and avoided the generation of γ-Fe2O3 impurities, while the particle size and saturation magnetization intensity of nano Fe3O4 gradually decreased with the increase of VC dosage. Nano Fe3O4 could be rapidly assembled into photonic crystal dot matrix structures under a magnetic field, demonstrating tunability to various diffraction wavelengths. The nano Fe3O4 modified by polyvinylpyrrolidone (PVP) and silicon coated could be stably dispersed in a variety of organic solvents and thus diffracted different wavelengths under a magnetic field. This is expected to be applied in various scenarios in the field of optical color development.

8.
J Proteome Res ; 23(4): 1495-1505, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38576392

ABSTRACT

Triple-negative breast cancer (TNBC) is known for its aggressive nature, and TNBC management is currently challenging due to the lack of effective targets. Despite the importance of histone post-translational modifications (hPTMs) in breast cancer, their associations with molecular subtypes of breast cancer, especially TNBC, are poorly understood. In this study, a combination of untargeted and targeted proteomics approaches, supplemented by a derivatization method, was applied to breast cancer cells and tissue samples. Untargeted proteomics of eight breast cancer cell lines belonging to different molecular subtypes revealed 36 modified peptides with 12 lysine modification sites in histone H3, and the most frequently reported top 5 histone H3 methylation and acetylation sites were covered. Then, targeted proteomics was carried out to quantify the total 20 target hPTMs at the covered modification sites (i.e., mono-, di-, trimethylation, and acetylation for each site), indicating the difficulty in distinguishing TNBC cells from normal cells. Subsequently, the analysis in TNBC patients revealed significant expression differences in 4 specific hPTMs (H3K14ac, H3K27me1, H3K36me2, and H3K36me3) between TNBC and adjacent normal tissue samples. These unique hPTM patterns allowed for the differentiation of TNBC from normal cases. This finding provides promising implications for advancing targeted treatment strategies for TNBC in the future.


Subject(s)
Histones , Triple Negative Breast Neoplasms , Humans , Histones/metabolism , Triple Negative Breast Neoplasms/metabolism , Proteomics/methods , Cell Line, Tumor , Mass Spectrometry , Protein Processing, Post-Translational
9.
Abdom Radiol (NY) ; 49(6): 1779-1791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656367

ABSTRACT

PURPOSE: To analyze the clinicopathologic information and CT imaging features of Epstein-Barr virus (EBV)-positive gastric cancer (GC) and establish CT-based radiomics models to predict the EBV status of GC. METHODS: This retrospective study included 144 GC cases, including 48 EBV-positive cases. Pathological and immunohistochemical information was collected. CT enlarged LN and morphological characteristics were also assessed. Radiomics models were constructed to predict the EBV status, including decision tree (DT), logistic regression (LR), random forest (RF), and support vector machine (SVM). RESULTS: T stage, Lauren classification, histological differentiation, nerve invasion, VEGFR2, E-cadherin, PD-L1, and Ki67 differed significantly between the EBV-positive and -negative groups (p = 0.015, 0.030, 0.006, 0.022, 0.028, 0.030, < 0.001, and < 0.001, respectively). CT enlarged LN and large ulceration differed significantly between the two groups (p = 0.019 and 0.043, respectively). The number of patients in the training and validation cohorts was 100 (with 33 EBV-positive cases) and 44 (with 15 EBV-positive cases). In the training cohort, the radiomics models using DT, LR, RF, and SVM yielded areas under the curve (AUCs) of 0.905, 0.771, 0.836, and 0.886, respectively. In the validation cohort, the diagnostic efficacy of radiomics models using the four classifiers were 0.737, 0.722, 0.751, and 0.713, respectively. CONCLUSION: A significantly higher proportion of CT enlarged LN and a significantly lower proportion of large ulceration were found in EBV-positive GC. The prediction efficiency of radiomics models with different classifiers to predict EBV status in GC was good.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Tomography, X-Ray Computed , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , Male , Female , Retrospective Studies , Tomography, X-Ray Computed/methods , Middle Aged , Epstein-Barr Virus Infections/diagnostic imaging , Epstein-Barr Virus Infections/complications , Aged , Adult , Herpesvirus 4, Human , Predictive Value of Tests , Radiomics
10.
Int J Biol Macromol ; 265(Pt 2): 131111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522700

ABSTRACT

Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to "quench" its own yellow fluorescence through the specific binding of compounds containing enol structures to Fe3+. Studying the fluorescence lifetime of CNS2 in the presence or absence of Fe3+ reveals that the quenching mechanism is static. The presence of multiple recognition sites on the chitosan chain bound to Fe3+ gave CNS2 rapid recognition (1 min) and high sensitivity, with a detection limit as low as 0.211 µM. Moreover, the recognition of Fe3+ by CNS2 had a good specificity and was not affected by interferences. More importantly, in this study, CNS2 was successfully utilised to prepare fluorescent composite membranes and to detect Fe3+ in real water samples and a variety of food samples. The results show that the complex sample environment still does not affect the recognition of Fe3+ by CNS2. All the above experiments obtained more satisfactory results, which provide strong support for the detection of Fe3+ by the probe CNS2 in practical applications.


Subject(s)
Chitosan , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Water , Chitosan/chemistry , Iron/chemistry , Fluorescence , Spectrometry, Fluorescence/methods
11.
Nat Methods ; 21(4): 609-618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443507

ABSTRACT

Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.


Subject(s)
Nanopores , Amino Acids/chemistry , Peptides/chemistry , Amino Acid Sequence , Porins/chemistry , Porins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL