Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
ChemMedChem ; : e202400349, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965060

ABSTRACT

Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses  serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.

2.
J Cosmet Dermatol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923657

ABSTRACT

BACKGROUND: Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM: This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS: The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS: A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION: A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.

3.
ACS Appl Mater Interfaces ; 16(22): 29087-29097, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788159

ABSTRACT

Electrospun microfibers, designed to emulate the extracellular matrix (ECM), play a crucial role in regulating the cellular microenvironment for tissue repair. Understanding their mechanical influence and inherent biological interactions at the ECM interface, however, remains a complex challenge. This study delves into the role of mechanical cues in tissue repair by fabricating Col/PLCL microfibers with varying chemical compositions and alignments that mimic the structure of the ECM. Furthermore, we optimized these microfibers to create the Col/PLCL@PDO aligned suture, with a specific emphasis on mechanical tension in tissue repair. The result reveals that within fibers of identical chemical composition, fibroblast proliferation is more pronounced in aligned fibers than in unaligned ones. Moreover, cells on aligned fibers exhibit an increased aspect ratio. In vivo experiments demonstrated that as the tension increased to a certain level, cell proliferation augmented, cells assumed more elongated morphologies with distinct protrusions, and there was an elevated secretion of collagen III and tension suture, facilitating soft tissue repair. This research illuminates the structural and mechanical dynamics of electrospun fiber scaffolds; it will provide crucial insights for the advancement of precise and controllable tissue engineering materials.


Subject(s)
Biomimetic Materials , Cell Proliferation , Sutures , Tissue Engineering , Tissue Scaffolds , Animals , Cell Proliferation/drug effects , Biomimetic Materials/chemistry , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/cytology , Polyesters/chemistry , Stress, Mechanical
4.
RSC Adv ; 14(21): 15008-15020, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38720974

ABSTRACT

Enamel white spot lesions (WSLs) are usually caused by the dissolution of minerals (mainly calcium and phosphate) on the tooth surface due to the acidic environment in the oral cavity. Without timely intervention, WSLs may lead to white spots or a sense of transparency on the tooth surface, and even the formation of dental caries (tooth decay) in severe cases. The key to preventing and treating WSLs is inhibiting the activity of acid-producing bacteria and promoting the remineralization of demineralized enamel. In this study, the network structure formed by sodium tripolyphosphate (TPP) cross-linked chitosan was used to stabilize calcium phosphate, and the multifunctional nanocomposite was constructed by integrating antibacterial components of traditional Chinese medicine, honokiol nanoparticles (HK-NPs) and sodium fluoride to achieve the purpose of resisting cariogenic bacteria and remineralizing with sustained release of calcium and phosphate ions. Notably, we enhanced the remineralization effect of nanocomposites with the help of functional nanocoatings inspired by the mussel biomimetic coating. The experimental results show that the synergistic remineralization effect of nanocomposite and nanocoating is better than that of a single strategy. This multi-prong treatment strategy provides the theoretical and experimental basis for the clinical prevention and treatment of WSLs.

5.
Food Chem ; 451: 139377, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703722

ABSTRACT

Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.


Subject(s)
Bacteria , Microbiota , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fermentation , Metabolomics , Temperature , Fermented Foods/analysis , Fermented Foods/microbiology
6.
Front Med (Lausanne) ; 11: 1390878, 2024.
Article in English | MEDLINE | ID: mdl-38737762

ABSTRACT

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

7.
Article in English | MEDLINE | ID: mdl-38801182

ABSTRACT

BACKGROUND: Liver fibrosis is a major cause of morbidity and mortality among in chronic hepatitis patients. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. METHODS: In this retrospective study, we developed three radiomics models using contrast-enhanced CT scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest (RFS-RF) and the least absolute shrinkage and selection operator (LASSO) logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots and decision curve analysis. External validation was performed on 114 patients from two institutions. RESULTS: Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices: 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (RFR-score and SVMR-score) providing more significant advantages. CONCLUSION: Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.

8.
Endocrine ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760615

ABSTRACT

OBJECTIVE: Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab. METHODS: The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals. PARTICIPANTS: This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting. RESULTS: Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients. CONCLUSIONS: Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.

9.
Environ Res ; 257: 119240, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821462

ABSTRACT

BACKGROUND: Prolonged exposure to air pollution has been linked to adverse respiratory health, yet the evidence concerning its association with chronic obstructive pulmonary disease (COPD) is inconsistent. The evidence of a greenness effect on chronic respiratory diseases is limited. OBJECTIVE: This study aimed to investigate the association between long-term exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (as measured by the normalized difference vegetation index - NDVI) and incidence of self-reported chronic bronchitis or COPD (CB/COPD). METHODS: We analyzed data from 5355 adults from 7 centers participating in the Respiratory Health in Northern Europe (RHINE) study. Mean exposures to air pollution and greenness were assessed at available residential addresses in 1990, 2000 and 2010 using air dispersion models and satellite data, respectively. Poisson regression with log person-time as an offset was employed to analyze the association between air pollution, greenness, and CB/COPD incidence, adjusting for confounders. RESULTS: Overall, there were 328 incident cases of CB/COPD during 2010-2023. Despite wide statistical uncertainty, we found a trend for a positive association between NO2 exposure and CB/COPD incidence, with incidence rate ratios (IRRs) per 10 µg/m³ difference ranging between 1.13 (95% CI: 0.90-1.41) in 1990 and 1.18 (95% CI: 0.96-1.45) in 2000. O3 showed a tendency for inverse association with CB/COPD incidence (IRR from 0.84 (95% CI: 0.66-1.07) in 2000 to 0.88 (95% CI: 0.69-1.14) in 2010. No consistent association was found between PM, BC and greenness with CB/COPD incidence across different exposure time windows. CONCLUSION: Consistent with prior research, our study suggests that individuals exposed to higher concentrations of NO2 may face an elevated risk of developing COPD, although evidence remains inconclusive. Greenness was not associated with CB/COPD incidence, while O3 showed a tendency for an inverse association with the outcome.

10.
Ther Innov Regul Sci ; 58(4): 773-787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683419

ABSTRACT

BACKGROUND: Diabetes, a chronic disease worldwide, may be associated with a poorer prognosis in patients with coronavirus disease 2019 (COVID-19). While some antihyperglycemic medications may be beneficial, others may increase the risk of adverse clinical outcomes of COVID-19. We aimed to analyze the effect of antihyperglycemic medications on COVID-19. METHODS: We searched the Web of Science, Cochrane Library, EMBASE, PubMed, and Scopus databases from December 2019 to June 2022 to identify literature related to patients with COVID-19 and type 2 diabetes mellitus (T2DM) treated with antihyperglycemic medications. RESULTS: 56 studies were included in the analysis. Metformin (OR 0.66; 95% CI 0.58-0.74; p < 0.05), Glucagon-like peptide-1 receptor agonist (GLP-1ra) (OR 0.73; 95% CI 0.59-0.91; p < 0.05), and sodium-dependent glucose transporters 2 inhibitor (SGLT 2i) (OR 0.77; 95% CI 0.69-0.87; p < 0.05) were associated with lower mortality risk, while insulin was associated with increased mortality risk (OR 1.40; 95% CI 1.26-1.55; p < 0.05). Meanwhile, metformin (OR 0.65; 95% CI 0.50-0.85; p < 0.05) and GLP-1ra (OR 0.84; 95% CI 0.76-0.94; p < 0.05) were significantly associated with decreased severe manifestation risk. What's more, metformin (OR 0.77; 95% CI 0.62-0.96; p < 0.05), GLP-1ra (OR 0.86; 95% CI 0.81-0.92; p < 0.05), and SGLT 2i (OR 0.87; 95% CI 0.79-0.97; p < 0.05) were also associated with a decreased risk of hospitalization, but insulin were associated with an increased risk of hospitalization (OR 1.31; 95% CI 1.12-1.52; p < 0.05). Nevertheless, the results of the subgroup analyses showed that the effects of different glucose-lowering agents on COVID-19 may be related to in-hospital use or out-hospital use, elderly or non-elderly patients use, and different geography. CONCLUSION: Metformin, GLP-1ra, and SGLT 2i have shown a positive effect on clinical outcomes in COVID-19, particularly in non-elderly individuals. However, insulin use may pose a higher risk, especially in elderly patients, so need with caution. Meanwhile, DPP-4i, TZD, α-GLUi, and sulfonylureas appeared to have a neutral effect. These results need to be validated in future clinical studies.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Observational Studies as Topic , Humans , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Metformin/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
12.
Front Microbiol ; 15: 1360524, 2024.
Article in English | MEDLINE | ID: mdl-38638902

ABSTRACT

Rhizoctonia solani AG-3 is a plant pathogenic fungus that belongs to the group of multinucleate Rhizoctonia. According to its internal transcribed spacer (ITS) cluster analysis and host range, it is divided into TB, PT, and TM subgroups. AG-3 TB mainly causes tobacco target spots, AG-3 PT mainly causes potato black scurf, and AG-3 TM mainly causes tomato leaf blight. In our previous study, we found that all 36 tobacco target spot strains isolated from Yunnan (Southwest China) were classified into AG-3 TB subgroup, while only two of the six tobacco target spot strains isolated from Liaoning (Northeast China) were classified into AG-3 TB subgroup, and the remaining four strains were classified into AG-3 TM subgroup, which had a unique taxonomic status, and there was no previous report on the whole genome information of AG-3 TM subgroup. In this study, the whole genomes of R. solani AG-3 strains 3T-1 (AG-3 TM isolated from Liaoning) and MJ-102 (AG-3 TB isolated from Yunnan) isolated from tobacco target spot in Liaoning and Yunnan were sequenced by IIumina and PacBio sequencing platforms. Comparative genomic analysis was performed with the previously reported AG-3 PT strain Rhs1AP, revealing their differences in genomes and virulence factors. The results indicated that the genome size of 3T-1 was 42,103,597 bp with 11,290 coding genes and 49.74% GC content, and the genome size of MJ-102 was 41,908,281 bp with 10,592 coding genes and 48.91% GC content. Through comparative genomic analysis with the previously reported strain Rhs1AP (AG-3 PT), it was found that the GC content between the genomes was similar, but the strains 3T-1 and MJ-102 contained more repetitive sequences. Similarly, there are similarities between their virulence factors, but there are also some differences. In addition, the results of collinearity analysis showed that 3T-1 and MJ-102 had lower similarity and longer evolutionary distance with Rhs1AP, but the genetic relationship between 3T-1 and MJ-102 was closer. This study can lay a foundation for studying the molecular pathogenesis and virulence factors of R. solani AG-3, and revealing its genomic composition will also help to develop more effective disease control strategies.

13.
Environ Pollut ; 351: 124060, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38685555

ABSTRACT

Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.


Subject(s)
Arsenic , Energy Metabolism , Mice, Inbred C57BL , Sperm Motility , Testis , Animals , Male , Mice , Sperm Motility/drug effects , Arsenic/toxicity , Testis/drug effects , Testis/metabolism , Energy Metabolism/drug effects , Spermatozoa/drug effects
14.
Anal Chem ; 96(17): 6784-6793, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632870

ABSTRACT

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Subject(s)
Hepatitis B Surface Antigens , Spectrum Analysis, Raman , Hepatitis B Surface Antigens/blood , Spectrum Analysis, Raman/methods , Humans , Hepatitis B virus/isolation & purification , Metal Nanoparticles/chemistry , Hepatitis B/blood , Hepatitis B/diagnosis , Surface Properties , Limit of Detection
15.
Infect Agent Cancer ; 19(1): 17, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664813

ABSTRACT

BACKGROUND: Hepatitis C patients with advanced fibrosis or cirrhosis are at high risk of developing hepatocellular carcinoma (HCC), even after sustained virological response (SVR). Clinical recommendations impose a significant burden on patients by recommending lifelong screening for HCC every six months. The goals of this study were to develop a nomogram that accurately stratifies risk of HCC and improve the screening approach that is currently in use. METHOD: Risk factors for HCC were identified using univariate and multivariate analyses in this prospective study. We developed and validated a nomogram for assessing hepatocellular carcinoma risk after SVR in patients with advanced fibrosis and cirrhosis. RESULTS: During the median follow-up period of 61.00 (57.00-66.00) months in the derivation cohort, 37 patients (9.61%) developed HCC. Older age (HR = 1.08, 95% CI 1.02-1.14, p = 0.009), male gender (HR = 2.38, 95% CI 1.10-5.13, p = 0.027), low serum albumin levels (HR = 0.92, 95% CI 0.86-1.00, p = 0.037), and high liver stiffness measurement (LSM) (HR = 1.03, 95% CI 1.01-1.06, p = 0.001) were found to be independent predictors of HCC development. Harrell's C-index for the derivation cohort was 0.81. The nomogram's 3-, 5- and 7-years time-dependent AUROCSs were 0.84 (95% CI 0.80-0.88), 0.83 (95% CI 0.79-0.87), and 0.81 (95% CI 0.77-0.85), respectively (all p > 0.05). According to the nomogram, patients are categorized as having low, intermediate, or high risk. The annual incidence rates of HCC in the three groups were 0.18%, 1.29%, and 4.45%, respectively (all p < 0.05). CONCLUSIONS: Older age, male gender, low serum albumin levels, and high LSM were risk factors for HCC after SVR in hepatitis C patients with advanced fibrosis and cirrhosis. We used these risk factors to establish a nomogram. The nomogram can identify a suitable screening plan by classifying hepatitis C patients according to their risk of HCC.

16.
Abdom Radiol (NY) ; 49(6): 2027-2039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38526594

ABSTRACT

PURPOSE: This study aimed to validate the 2018 FIGO staging system of cervical cancer (CC) by determining the metabolic and radiomic heterogeneity of primary tumors between stage IIIC1 and IIIC2. METHODS: 168 patients with squamous cell CC underwent pre-treatment fluorine-18 fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT) and were randomly allocated to training and testing cohorts with a 7:3 ratio. Radiomics features were extracted from the primary tumors based on CT and PET data. Ten metabolic parameters of the primary tumors were also assessed. After feature selection, three logistic regression radiomics models, involving (1) 2 CT features, (2) 3 PET features, and (3) 2 CT features + 3 PET features, respectively, and one random forest model were established. Finally, area under the curve (AUC) values and calibration curves were used to evaluate the 4 models. RESULTS: The IIIC1 and IIIC2 groups did not differ significantly in age, weight, height, or the 10 major metabolic parameters (P > 0.05). The AUCs of the 4 models were 0.577, 0.639, 0.763, and 0.506, respectively, in the training cohort, and 0.789, 0.699, 0.761, and 0.538, respectively, in the testing cohort. The model fit of the logistic regression model based on CT + PET data was good in both the training and testing cohorts. CONCLUSION: Our study offers additional diagnostic options for PALN metastasis, which could impact treatment decisions. Our results indirectly support the conclusions of previous studies recommending that primary tumors should be considered during IIIC staging.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasm Staging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Uterine Cervical Neoplasms , Humans , Female , Positron Emission Tomography Computed Tomography/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Middle Aged , Adult , Aged , Retrospective Studies , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Radiomics
17.
Shock ; 61(3): 375-381, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38517267

ABSTRACT

ABSTRACT: Background. Identifying the causative pathogens of central nervous system infections (CNSIs) is crucial, but the low detection rate of traditional culture methods in cerebrospinal fluid (CSF) has made the pathogenic diagnosis of CNSIs a longstanding challenge. Patients with CNSIs after neurosurgery often overlap with inflammatory and bleeding. Metagenomic next-generation sequencing (mNGS) has shown some benefits in pathogen detection. This study aimed to investigate the diagnostic performance of mNGS in the etiological diagnosis of CNSIs in patients after neurosurgery. Methods. In this prospective observational study, we enrolled patients with suspected CNSIs after neurosurgical operations who were admitted to the intensive care unit of Beijing Tiantan Hospital. All enrolled patients' CSF was tested using mNGS and pathogen culture. According to comprehensive clinical diagnosis, the enrolled patients were divided into CNSIs group and non-CNSIs group to compare the diagnostic efficiency of mNGS and pathogen culture. Results. From December 2021 to March 2023, 139 patients were enrolled while 66 in CNSIs group and 73 in non-CNSIs. The mNGS exceeded culture in the variety and quantity of pathogens detected. The mNGS outperformed traditional pathogen culture in terms of positive percent agreement (63.63%), accuracy (82.01%), and negative predictive value (75.00%), with statistically significant differences ( P < 0.05) for traditional pathogen culture. The mNGS also detected bacterial spectrum and antimicrobial resistance genes. Conclusions. Metagenomics has the potential to assist in the diagnosis of patients with CNSIs who have a negative culture.


Subject(s)
Central Nervous System Infections , Critical Care , Humans , High-Throughput Nucleotide Sequencing , Intensive Care Units , Central Nervous System Infections/diagnosis , Hospitalization , Sensitivity and Specificity
18.
Microbiol Spectr ; 12(5): e0255823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526296

ABSTRACT

This study aimed to investigate the prognostic value of a novel droplet digital polymerase chain reaction (DDPCR) assay in sepsis patients. In this prospective cohort study, univariable and multivariable Cox regressions were used to assess risk factors for 28-day mortality. We also monitored pathogen load together with clinical indicators in a subgroup of the cohort. A total of 107 sepsis patients with positive baseline DDPCR results were included. Detection of poly-microorganisms [adjusted hazard ratio (HR) = 3.19; 95% confidence interval (CI) = 1.34-7.62; P = 0.009], high Charlson Comorbidity Index (CCI) score (adjusted HR = 1.14; 95% CI = 1.01-1.29; P = 0.041), and Sequential Organ Failure Assessment (SOFA) score (adjusted HR = 1.18; 95% CI = 1.05-1.32; P = 0.005) at baseline were independent risk factors for 28-day mortality while initial pathogen load was not associated (adjusted HR = 1.17; 95% CI = 0.82-1.66; P = 0.385). Among 63 patients with serial DDPCR results, an increase in pathogen load at days 6-8 compared to baseline was a risk factor for 28-day mortality (P = 0.008). Also, pathogen load kinetics were significantly different between day-28 survivors and nonsurvivors (P = 0.022), with a decline overtime only in survivors and an increase from days 3 and 4 to days 6-8 in nonsurvivors. Using DDPCR technique, we found that poly-microorganisms detected and increased pathogen load a week after sepsis diagnosis were associated with poor prognosis.IMPORTANCEThis prospective study was initiated to explore the prognostic implications of a novel multiplex PCR assay in sepsis. Notably, our study was the largest cohort of sepsis with droplet digital polymerase chain reaction pathogen monitoring to date, allowing for a comprehensive evaluation of the prognostic significance of both pathogen species and load. We found that detection of poly-microorganisms was an independent risk factors for 28-day mortality. Also, pathogen load increase 1 week after sepsis diagnosis was a risk factor for 28-day mortality, and differential pathogen load kinetics were identified between day-28 survivors and nonsurvivors. Overall, this study demonstrated that pathogen species and load were highly correlated with sepsis prognosis. Patients exhibiting conditions mentioned above face a more adverse prognosis, suggesting the potential need for an escalation of antimicrobial therapy.Registered at ClinicalTrials.gov (NCT05190861).


Subject(s)
Polymerase Chain Reaction , Sepsis , Humans , Sepsis/microbiology , Sepsis/mortality , Sepsis/diagnosis , Prospective Studies , Female , Male , Prognosis , Middle Aged , Aged , Polymerase Chain Reaction/methods , Risk Factors , Bacterial Load/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Aged, 80 and over , Kinetics
19.
Environ Geochem Health ; 46(4): 119, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483628

ABSTRACT

The aim of this study is to conduct a systematic analysis of the SARS-CoV-2 levels in urban sewage and evaluate the associated positivity rates, thereby developing comprehensive insights into the epidemic situation and providing valuable inputs for the development of effective disease prevention and control strategies. The PubMed, Scopus, Embase, China National Knowledge Infrastructure, Wanfang Database, and VIP databases were systematically searched based on the predefined retrieval strategy. The literature published up to February 2023 was meticulously screened according to the predetermined inclusion and exclusion criteria, and the relevant data were extracted for subsequent integration. The quality assessment of the included studies adhered to the rigorous Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement guidelines. The meta-analysis was conducted using Stata 17.0 software. The meta-analysis included a total of 34 studies, encompassing 8429 municipal wastewater samples. A random effects model was employed for the analysis, revealing an overall SARS-CoV-2 positivity rate of 53.7% in the municipal wastewater samples. The subgroup analyses demonstrated significant regional variations in the SARS-CoV-2 positivity rate in municipal wastewater, with Africa exhibiting the highest rate at 62.5% (95% confidence interval [CI] 47.4 ~ 76.0%) and Oceania displaying the lowest at 33.3% (95% CI 22.0 ~ 46.3%). However, the subgroup analyses based on the sampling site, strain prevalence period, and laboratory testing method did not yield any statistically significant differences. The SARS-CoV-2 positivity rate in wastewater is relatively high globally, although it exhibits regional disparities. Regions with larger populations and lower economic levels demonstrate higher viral detection rates in sewage. Different types of wastewater sampling sites can be employed to monitor distinct aspects of the COVID-19 pandemic. Continuous surveillance of SARS-CoV-2 in wastewater plays a pivotal role in complementing clinical data, helping to track outbreak progression across diverse regions.


Subject(s)
COVID-19 , Wastewater , Humans , Sewage , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , SARS-CoV-2
20.
Int J Pharm ; 654: 123963, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38430952

ABSTRACT

Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.


Subject(s)
Ginsenosides , Minoxidil , Mice , Animals , Humans , Minoxidil/pharmacology , Minoxidil/therapeutic use , Ginsenosides/pharmacology , Androgens/therapeutic use , Mice, Inbred C57BL , Alopecia/drug therapy , Hair Follicle , Dihydrotestosterone , Cholesterol
SELECTION OF CITATIONS
SEARCH DETAIL
...